Rotational Isomeric State Models in Macromolecular Systems


Book Description

Over the past 40 years, RIS models for hundreds of polymer structures have been developed, and now the RIS approach is available in several software packages. However, users are often faced with the time-consuming task of finding the appropriate RIS parameters among the literature. This book facilitates this task by providing a comprehensive overview of the models available. It reviews the literature from the very first applications to the end of 1994, comprises synthetic as well as naturally occuring macromolecules, and tabulates all the pertinent features of published models. It will thus help readers, even those new to this method, to take advantage of this computationally efficient way of assessing the conformational properties of macromolecular systems.




Rotational Isomeric State Models in Macromolecular Systems


Book Description

Over the past 40 years, RIS models for hundreds of polymer structures have been developed, and now the RIS approach is available in several software packages. However, users are often faced with the time-consuming task of finding the appropriate RIS parameters among the literature. This book facilitates this task by providing a comprehensive overview of the models available. It reviews the literature from the very first applications to the end of 1994, comprises synthetic as well as naturally occuring macromolecules, and tabulates all the pertinent features of published models. It will thus help readers, even those new to this method, to take advantage of this computationally efficient way of assessing the conformational properties of macromolecular systems.




Computational Studies, Nanotechnology, and Solution Thermodynamics of Polymer Systems


Book Description

This text is the published version of many ofthe talks presented at two symposiums held as part of the Southeast Regional Meeting of the American Chemical Society (SERMACS) in Knoxville, TN in October, 1999. The Symposiums, entitled Solution Thermodynamics of Polymers and Computational Polymer Science and Nanotechnology, provided outlets to present and discuss problems of current interest to polymer scientists. It was, thus, decided to publish both proceedings in a single volume. The first part of this collection contains printed versions of six of the ten talks presented at the Symposium on Solution Thermodynamics of Polymers organized by Yuri B. Melnichenko and W. Alexander Van Hook. The two sessions, further described below, stimulated interesting and provocative discussions. Although not every author chose to contribute to the proceedings volume, the papers that are included faithfully represent the scope and quality of the symposium. The remaining two sections are based on the symposium on Computational Polymer Science and Nanotechnology organized by Mark D. Dadmun, Bobby G. Sumpter, and Don W. Noid. A diverse and distinguished group of polymer and materials scientists, biochemists, chemists and physicists met to discuss recent research in the broad field of computational polymer science and nanotechnology. The two-day oral session was also complemented by a number of poster presentations. The first article of this section is on the important subject of polymer blends. M. D.




The Polysiloxanes


Book Description

Polysiloxanes are the most studied inorganic and semi-inorganic polymers because of their many medical and commercial uses. The Si-O backbone endows polysiloxanes with intriguing properties: the strength of the Si-O bond imparts considerable thermal stability, and the nature of the bonding imparts low surface free energy. Prostheses, artificial organs, objects for facial reconstruction, vitreous substitutes in the eyes, and tubing take advantage of the stability and pliability of polysiloxanes. Artificial skin, contact lenses, and drug delivery systems utilize their high permeability. Such biomedical applications have led to biocompatibility studies on the interactions of polysiloxanes with proteins, and there has been interest in modifying these materials to improve their suitability for general biomedical application. Polysiloxanes examines novel aspects of polysiloxane science and engineering, including properties, work in progress, and important unsolved problems. The volume, with ten comprehensive chapters, examines the history, preparation and analysis, synthesis, characterization, and applications of these polymeric materials.




Molecular Driving Forces


Book Description

Molecular Driving Forces, Second Edition E-book is an introductory statistical thermodynamics text that describes the principles and forces that drive chemical and biological processes. It demonstrates how the complex behaviors of molecules can result from a few simple physical processes, and how simple models provide surprisingly accurate insights into the workings of the molecular world. Widely adopted in its First Edition, Molecular Driving Forces is regarded by teachers and students as an accessible textbook that illuminates underlying principles and concepts. The Second Edition includes two brand new chapters: (1) "Microscopic Dynamics" introduces single molecule experiments; and (2) "Molecular Machines" considers how nanoscale machines and engines work. "The Logic of Thermodynamics" has been expanded to its own chapter and now covers heat, work, processes, pathways, and cycles. New practical applications, examples, and end-of-chapter questions are integrated throughout the revised and updated text, exploring topics in biology, environmental and energy science, and nanotechnology. Written in a clear and reader-friendly style, the book provides an excellent introduction to the subject for novices while remaining a valuable resource for experts.




Reviews in Computational Chemistry, Volume 6


Book Description

Volume 6 of the successful series 'Reviews in Computational Chemistry' contains articles of interest to pharmaceutical chemists, biological chemists, chemical engineers, inorganic and organometallic chemists, synthetic organic chemists, polymer chemists, and theoretical chemists. The series is designed to help the chemistry community keep current with the many new developments in computational techniques. The writing style is refreshingly pedagogical and non-mathematical, allowing students and researchers access to computational methods outside their immediate area of expertise.




Modeling and Simulation in Polymers


Book Description

Filling a gap in the literature and all set to become the standard in this field, this monograph begins with a look at computational viscoelastic fluid mechanics and studies of turbulent flows of dilute polymer solutions. It then goes on discuss simulations of nanocomposites, polymerization kinetics, computational approaches for polymers and modeling polyelectrolytes. Further sections deal with tire optimization, irreversible phenomena in polymers, the hydrodynamics of artificial and bacterial flagella as well as modeling and simulation in liquid crystals. The result is invaluable reading for polymer and theoretical chemists, chemists in industry, materials scientists and plastics technologists.




Engineering Applications of Noncommutative Harmonic Analysis


Book Description

First published in 2001. The classical Fourier transform is one of the most widely used mathematical tools in engineering. However, few engineers know that extensions of harmonic analysis to functions on groups holds great potential for solving problems in robotics, image analysis, mechanics, and other areas. For those that may be aware of its potential value, there is still no place they can turn to for a clear presentation of the background they need to apply the concept to engineering problems. Engineering Applications of Noncommutative Harmonic Analysis brings this powerful tool to the engineering world. Written specifically for engineers and computer scientists, it offers a practical treatment of harmonic analysis in the context of particular Lie groups (rotation and Euclidean motion). It presents only a limited number of proofs, focusing instead on providing a review of the fundamental mathematical results unknown to most engineers and detailed discussions of specific applications. Advances in pure mathematics can lead to very tangible advances in engineering, but only if they are available and accessible to engineers. Engineering Applications of Noncommutative Harmonic Analysis provides the means for adding this valuable and effective technique to the engineer's toolbox.




The Science and Technology of Rubber


Book Description

The 4e of The Science and Technology of Rubber provides a broad survey of elastomers with special emphasis on materials with a rubber-like elasticity. As in previous editions, the emphasis remains on a unified treatment of the material, exploring chemical aspects such as elastomer synthesis and curing, through recent theoretical developments and characterization of equilibrium and dynamic properties, to the final applications of rubber, including tire engineering and manufacturing. Updated material stresses the continuous relationship between ongoing research in synthesis, physics, structure and mechanics of rubber technology and industrial applications. Special attention is paid to recent advances in rubber-like elasticity theory and new processing techniques for elastomers. Exciting new developments in green tire manufacturing and tire recycling are covered. - Provides a complete survey of elastomers for engineers and researchers in a unified treatment: from chemical aspects like elastomer synthesis and curing to the final applications of rubber, including tire engineering and manufacturing - Contains important updates to several chapters, including elastomer synthesis, characterization, viscoelastic behavior, rheology, reinforcement, tire engineering, and recycling - Includes a new chapter on the burgeoning field of bioelastomers




Molecular Modeling of Polymers


Book Description