Rough Set–Based Classification Systems


Book Description

This book demonstrates an original concept for implementing the rough set theory in the construction of decision-making systems. It addresses three types of decisions, including those in which the information or input data is insufficient. Though decision-making and classification in cases with missing or inaccurate data is a common task, classical decision-making systems are not naturally adapted to it. One solution is to apply the rough set theory proposed by Prof. Pawlak. The proposed classifiers are applied and tested in two configurations: The first is an iterative mode in which a single classification system requests completion of the input data until an unequivocal decision (classification) is obtained. It allows us to start classification processes using very limited input data and supplementing it only as needed, which limits the cost of obtaining data. The second configuration is an ensemble mode in which several rough set-based classification systems achieve the unequivocal decision collectively, even though the systems cannot separately deliver such results.




Rough Set Methods and Applications


Book Description

Rough set approach to reasoning under uncertainty is based on inducing knowledge representation from data under constraints expressed by discernibility or, more generally, similarity of objects. Knowledge derived by this approach consists of reducts, decision or association rules, dependencies, templates, or classifiers. This monograph presents the state of the art of this area. The reader will find here a deep theoretical discussion of relevant notions and ideas as well as rich inventory of algorithmic and heuristic tools for knowledge discovery by rough set methods. An extensive bibliography will help the reader to get an acquaintance with this rapidly growing area of research.




Understanding and Using Rough Set Based Feature Selection: Concepts, Techniques and Applications


Book Description

This book provides a comprehensive introduction to rough set-based feature selection. Rough set theory, first proposed by Zdzislaw Pawlak in 1982, continues to evolve. Concerned with the classification and analysis of imprecise or uncertain information and knowledge, it has become a prominent tool for data analysis, and enables the reader to systematically study all topics in rough set theory (RST) including preliminaries, advanced concepts, and feature selection using RST. The book is supplemented with an RST-based API library that can be used to implement several RST concepts and RST-based feature selection algorithms. The book provides an essential reference guide for students, researchers, and developers working in the areas of feature selection, knowledge discovery, and reasoning with uncertainty, especially those who are working in RST and granular computing. The primary audience of this book is the research community using rough set theory (RST) to perform feature selection (FS) on large-scale datasets in various domains. However, any community interested in feature selection such as medical, banking, and finance can also benefit from the book. This second edition also covers the dominance-based rough set approach and fuzzy rough sets. The dominance-based rough set approach (DRSA) is an extension of the conventional rough set approach and supports the preference order using the dominance principle. In turn, fuzzy rough sets are fuzzy generalizations of rough sets. An API library for the DRSA is also provided with the second edition of the book.




Incomplete Information: Rough Set Analysis


Book Description

In 1982, Professor Pawlak published his seminal paper on what he called "rough sets" - a work which opened a new direction in the development of theories of incomplete information. Today, a decade and a half later, the theory of rough sets has evolved into a far-reaching methodology for dealing with a wide variety of issues centering on incompleteness and imprecision of information - issues which playa key role in the conception and design of intelligent information systems. "Incomplete Information: Rough Set Analysis" - or RSA for short - presents an up-to-date and highly authoritative account of the current status of the basic theory, its many extensions and wide-ranging applications. Edited by Professor Ewa Orlowska, one of the leading contributors to the theory of rough sets, RSA is a collection of nineteen well-integrated chapters authored by experts in rough set theory and related fields. A common thread that runs through these chapters ties the concept of incompleteness of information to those of indiscernibility and similarity.




Transactions on Rough Sets XVII


Book Description

The LNCS journal Transactions on Rough Sets is devoted to the entire spectrum of rough sets related issues, from logical and mathematical foundations, through all aspects of rough set theory and its applications, such as data mining, knowledge discovery and intelligent information processing, to relations between rough sets and other approaches to uncertainty, vagueness, and incompleteness, such as fuzzy sets and theory of evidence. Volume XVII is a continuation of a number of research streams which have grown out of the seminal work by Zdzislaw Pawlak during the first decade of the 21st century. The research streams represented in the papers cover both theory and applications of rough, fuzzy and near sets as well as their combinations.




Intelligent Decision Support


Book Description

Intelligent decision support is based on human knowledge related to a specific part of a real or abstract world. When the knowledge is gained by experience, it is induced from empirical data. The data structure, called an information system, is a record of objects described by a set of attributes. Knowledge is understood here as an ability to classify objects. Objects being in the same class are indiscernible by means of attributes and form elementary building blocks (granules, atoms). In particular, the granularity of knowledge causes that some notions cannot be expressed precisely within available knowledge and can be defined only vaguely. In the rough sets theory created by Z. Pawlak each imprecise concept is replaced by a pair of precise concepts called its lower and upper approximation. These approximations are fundamental tools and reasoning about knowledge. The rough sets philosophy turned out to be a very effective, new tool with many successful real-life applications to its credit. It is worthwhile stressing that no auxiliary assumptions are needed about data, like probability or membership function values, which is its great advantage. The present book reveals a wide spectrum of applications of the rough set concept, giving the reader the flavor of, and insight into, the methodology of the newly developed disciplines. Although the book emphasizes applications, comparison with other related methods and further developments receive due attention.




Transactions on Rough Sets XIV


Book Description

The LNCS journal Transactions on Rough Sets is devoted to the entire spectrum of rough sets related issues, from logical and mathematical foundations, through all aspects of rough set theory and its applications, such as data mining, knowledge discovery, and intelligent information processing, to relations between rough sets and other approaches to uncertainty, vagueness, and incompleteness, such as fuzzy sets and theory of evidence. Volume XIV contains 11 revised extended papers from the 12th International Conference on Rough Sets, Fuzzy Sets, Data Mining and Granular Computing, RSFDGrC 2009, held in Delhi, India. The topics include various rough set generalizations in combination with formal concept analysis, lattice theory, fuzzy sets and belief functions, rough and fuzzy clustering techniques, as well as applications to gene selection, web page recommendation systems, facial recognition, and temporal pattern detection. in addition, this volume contains a regular article on rough multiset and its multiset topology.




Big Data in Complex Systems


Book Description

This volume provides challenges and Opportunities with updated, in-depth material on the application of Big data to complex systems in order to find solutions for the challenges and problems facing big data sets applications. Much data today is not natively in structured format; for example, tweets and blogs are weakly structured pieces of text, while images and video are structured for storage and display, but not for semantic content and search. Therefore transforming such content into a structured format for later analysis is a major challenge. Data analysis, organization, retrieval, and modeling are other foundational challenges treated in this book. The material of this book will be useful for researchers and practitioners in the field of big data as well as advanced undergraduate and graduate students. Each of the 17 chapters in the book opens with a chapter abstract and key terms list. The chapters are organized along the lines of problem description, related works, and analysis of the results and comparisons are provided whenever feasible.




Perception-Based Data Processing in Acoustics


Book Description

This monograph provides novel insights into cognitive mechanisms underlying the processing of sound and music in different environments. A solid understanding of these mechanisms is vital for numerous technological applications such as for example information retrieval from distributed musical databases or building expert systems. In order to investigate the cognitive mechanisms of music perception fundamentals of hearing psychophysiology and principles of music perception are presented. In addition, some computational intelligence methods are reviewed, such as rough sets, fuzzy logic, artificial neural networks, decision trees and genetic algorithms. The applications of hybrid decision systems to problem solving in music and acoustics are exemplified and discussed on the basis of obtained experimental results.




Transactions on Rough Sets III


Book Description

The LNCS journal Transactions on Rough Sets is devoted to the entire spectrum of rough sets related issues, from logical and mathematical foundations, through all aspects of rough set theory and its applications, such as data mining, knowledge discovery, and intelligent information processing, to relations between rough sets and other approaches to uncertainty, vagueness, and incompleteness, such as fuzzy sets and theory of evidence. This third volume of the Transactions on Rough Sets presents 11 revised papers that have been through a careful peer reviewing process by the journal's Editorial Board. The research monograph "Time Complexity of Decision Trees" by Mikhail Ju. Moshkov is presented in the section on dissertation and monographs. Among the regular papers the one by Zdzislaw Pawlak entitled "Flow Graphs and Data Mining" deserves a special mention.