The Geography of Transport Systems


Book Description

Mobility is fundamental to economic and social activities such as commuting, manufacturing, or supplying energy. Each movement has an origin, a potential set of intermediate locations, a destination, and a nature which is linked with geographical attributes. Transport systems composed of infrastructures, modes and terminals are so embedded in the socio-economic life of individuals, institutions and corporations that they are often invisible to the consumer. This is paradoxical as the perceived invisibility of transportation is derived from its efficiency. Understanding how mobility is linked with geography is main the purpose of this book. The third edition of The Geography of Transport Systems has been revised and updated to provide an overview of the spatial aspects of transportation. This text provides greater discussion of security, energy, green logistics, as well as new and updated case studies, a revised content structure, and new figures. Each chapter covers a specific conceptual dimension including networks, modes, terminals, freight transportation, urban transportation and environmental impacts. A final chapter contains core methodologies linked with transport geography such as accessibility, spatial interactions, graph theory and Geographic Information Systems for transportation (GIS-T). This book provides a comprehensive and accessible introduction to the field, with a broad overview of its concepts, methods, and areas of application. The accompanying website for this text contains a useful additional material, including digital maps, PowerPoint slides, databases, and links to further reading and websites. The website can be accessed at: http://people.hofstra.edu/geotrans This text is an essential resource for undergraduates studying transport geography, as well as those interest in economic and urban geography, transport planning and engineering.




Human Behaviour and Traffic Networks


Book Description

How do people behave in different traffic situations? Are there general laws for mathematical modelling of decision dynamics? The answers, given at the first international workshop on "Human Behaviour in Traffic Networks", are presented in this volume. In 13 articles, well-known experts report about their current work on experiments and modelling in this area. The topics range from psychological behaviour in traffic situations, traffic simulations of various aspects and market analysis to experiments with human participants used in experimental economics. The articles filled with many illustrations are aimed at interested students as well as experts in this field.




Equilibrium and Advanced Transportation Modelling


Book Description

Each chapter in Equilibrium and Advanced Transportation Modelling develops a topic from basic concepts to the state-of-the-art, and beyond. All chapters relate to aspects of network equilibrium. Chapter One advocates the use of simulation models for the representation of traffic flow movements at the microscopic level. Chapter Two presents travel demand systems for generating trip matrices from activity-based models, taking into account the entire daily schedule of network users. Chapter Three examines equilibrium strategic choices adopted by the passengers of a congested transit system, carefully addressing line selection at boarding and transfer nodes. Chapter Four provides a critical appraisal of the traditional process that consists in sequentially performing the tasks of trip generation, trip distribution, mode split and assignment, and its impact on the practice of transportation planning. Chapter Five gives an insightful overview of stochastic assignment models, both in the static and dynamic cases. Chapters Six and Seven investigate the setting of tolls to improve traffic flow conditions in a congested transportation network. Chapter Eight provides a unifying framework for the analysis of multicriteria assignment models. In this chapter, available algorithms are summarized and an econometric perspective on the estimation of heterogeneous preferences is given. Chapter Nine surveys the use of hyperpaths in operations research and proposes a new paradigm of equilibrium in a capacitated network, with an application to transit assignment. Chapter Ten analyzes the transient states of a system moving towards equilibrium, using the mathematical framework of projected dynamical systems. Chapter Eleven discusses an in-depth survey of algorithms for solving shortest path problems, which are pervasive to any equilibrium algorithm. The chapter devotes special attention to the computation of dynamic shortest paths and to shortest hyperpaths. The final chapter considers operations research tools for reducing traffic congestion, in particular introducing an algorithm for solving a signal-setting problem formulated as a bilevel program.




The Traffic Assignment Problem


Book Description

This monograph provides both a unified account of the development of models and methods for the problem of estimating equilibrium traffic flows in urban areas and a survey of the scope and limitations of present traffic models. The development is described and analyzed by the use of the powerful instruments of nonlinear optimization and mathematical programming within the field of operations research. The first part is devoted to mathematical models for the analysis of transportation network equilibria; the second deals with methods for traffic equilibrium problems. This title will interest readers wishing to extend their knowledge of equilibrium modeling and analysis and of the foundations of efficient optimization methods adapted for the solution of large-scale models. In addition to its value to researchers, the treatment is suitable for advanced graduate courses in transportation, operations research, and quantitative economics.




Urban Transportation Networks


Book Description







Traffic Assignment


Book Description




Urban Traffic Networks


Book Description

The problems of urban traffic in the industrially developed countries have been at the top of the priority list for a long time. While making a critical contribution to the economic well being of those countries, transportation systems in general and highway traffic in particular, also have detrimental effects which are evident in excessive congestion, high rates of accidents and severe pollution problems. Scientists from different disciplines have played an important role in the development and refinement of the tools needed for the planning, analysis, and control of urban traffic networks. In the past several years, there were particularly rapid advances in two areas that affect urban traffic: 1. Modeling of traffic flows in urban networks and the prediction of the resulting equilibrium conditions; 2. Technology for communication with the driver and the ability to guide him, by providing him with useful, relevant and updated information, to his desired destination.