Fatigue and Fracture Mechanics


Book Description




NDE in Relation to Structural Integrity for Nuclear and Pressurised Components


Book Description

The proceedings of a conference organized by the European Commission Joint Research Centre Institute of Advanced Materials. The conference was held in Amsterdam, the Netherlands in October 1998 and covered all aspects of this highly important subject including links between structural integrity requirements and NDE performance. The development of performance demonstration / qualification for NDE systems and experiance of their application in practice feature prominently. Development of improved NDE systems, new methods of NDE and methods for assessing NDE performance such as modeling are also included.




Fatigue and Fracture Mechanics


Book Description




Fatigue and Fracture Mechanics


Book Description




Ninth International Symposium on Environmental Degradation of Materials in Nuclear Power Systems


Book Description

This collection presents an exchange of ideas among scientists and engineers about the economic and safety concerns surrounding environmentally induced materials problems which lead to nuclear power plant outages. Scientists and engineers concerned with the environmental degradation processes (corrosion, mechanical, and radiation effects) present their latest results on such topics as life extension/relicensing and materials problems associated with spent fuel storage and radioactive waste disposal. This collection will be of interest to utility engineers, reactor vendor engineers, plant architect engineers, researchers concerned with materials degradation, and consultants involved in design, construction, and operation of water reactors.




Comprehensive Structural Integrity


Book Description

The aim of this major reference work is to provide a first point of entry to the literature for the researchers in any field relating to structural integrity in the form of a definitive research/reference tool which links the various sub-disciplines that comprise the whole of structural integrity. Special emphasis will be given to the interaction between mechanics and materials and structural integrity applications. Because of the interdisciplinary and applied nature of the work, it will be of interest to mechanical engineers and materials scientists from both academic and industrial backgrounds including bioengineering, interface engineering and nanotechnology. The scope of this work encompasses, but is not restricted to: fracture mechanics, fatigue, creep, materials, dynamics, environmental degradation, numerical methods, failure mechanisms and damage mechanics, interfacial fracture and nano-technology, structural analysis, surface behaviour and heart valves. The structures under consideration include: pressure vessels and piping, off-shore structures, gas installations and pipelines, chemical plants, aircraft, railways, bridges, plates and shells, electronic circuits, interfaces, nanotechnology, artificial organs, biomaterial prostheses, cast structures, mining... and more. Case studies will form an integral part of the work.




Fatique and Fracture Mechanics


Book Description




Irradiation Embrittlement of Reactor Pressure Vessels (RPVs) in Nuclear Power Plants


Book Description

Reactor Pressure Vessels (RPVs) contain the fuel and therefore the reaction at the heart of nuclear power plants. They are a life-determining structural component: if they suffer serious damage, the continued operation of the plant is in jeopardy. This book critically reviews irradiation embrittlement, the main degradation mechanism affecting RPV steels, and mitigation routes for managing the RPV lifetime. Part I reviews RPV design and fabrication in different countries, with an emphasis on the materials required, their important properties, and manufacturing technologies. Part II then considers RVP embrittlement in operational nuclear power plants using different reactors. Chapters are devoted to embrittlement in light-water reactors, including WWER-type reactors and Magnox reactors. Finally, Part III presents techniques for studying embrittlement, including irradiation simulation techniques, microstructural characterisation techniques, and probabilistic fracture mechanics. Irradiation Embrittlement of Reactor Pressure Vessels (RPVs) in Nuclear Power Plants provides a thorough review of an issue that is central to the safety of nuclear power generation. The book includes contributions from an international team of experts, and will be a useful resource for nuclear plant operators and managers, relevant regulatory and safety bodies, nuclear metallurgists and other academics in this field - Discusses reactor pressure vessel (RPV) design and the effect irradiation embrittlement can have, the main degradation mechanism affecting RPVs - Examines embrittlement processes in RPVs in different reactor types, as well as techniques for studying RPV embrittlement




Applied Fracture Mechanics


Book Description

The book "Applied Fracture Mechanics" presents a collection of articles on application of fracture mechanics methods to materials science, medicine, and engineering. In thirteen chapters, a wide range of topics is discussed, including strength of biological tissues, safety of nuclear reactor components, fatigue effects in pipelines, environmental effects on fracture among others. In addition, the book presents mathematical and computational methods underlying the fracture mechanics applications, and also developments in statistical modeling of fatigue. The work presented in this book will be useful, effective, and beneficial to mechanical engineers, civil engineers, and material scientists from industry, research, and education.




Fatigue, Durability, and Fracture Mechanics


Book Description

This book presents selected papers presented during Fatigue Durability India 2019. The contents of this volume discuss advances in the field of fatigue, durability, and fracture, and cover mechanical failure and its applications. The chapters cover a wide spectrum of topics, including design, engineering, testing and computational evaluation of the components or systems for fatigue, durability, and fracture mechanics. The contents of this book will appeal not only to academic researchers, but also to design engineers, failure analysts, maintenance engineers, certification personnel, and R&D professionals involved in a wide variety of industries.