The Physics of Deformation and Fracture of Polymers


Book Description

A physical, mechanism-based presentation of the plasticity and fracture of polymers, covering industrial scale applications through to nanoscale biofluidic devices.




Science and Technology of Rubber


Book Description

The Science and Technology of Rubber, Third Edition provides a broad survey of elastomers with special emphasis on materials with a rubber-like elasticity. As in the 2nd edition, the emphasis remains on a unified treatment of the material; exploring topics from the chemical aspects such as elastomer synthesis and curing, through recent theoretical developments and characterization of equilibrium and dynamic properties, to the final applications of rubber, including tire engineering and manufacturing. Many advances have been made in polymer and elastomers research over the past ten years since the 2nd edition was published. Updated material stresses the continuous relationship between the ongoing research in synthesis, physics, structure and mechanics of rubber technology and industrial applications. Special attention is paid to recent advances in rubber-like elasticity theory and new processing techniques for elastomers. This new edition is comprised of 20% new material, including a new chapter on environmental issues and tire recycling.




Rubber and Rubber Balloons


Book Description

Experiments with rubber balloons and rubber sheets have led to surprising observations, some of them hitherto unknown or not previously described in the literature. In balloons, these phenomena are due to the non-monotonic pressure-radius characteristic which makes balloons a subject of interest to physicists engaged in stability studies. Here is a situation in which symmetry breaking and hysteresis may be studied analytically, because the stress-stretch relations of rubber - and its non-convex free energy - can be determined explicitly from the kinetic theory of rubber and from non-linear elasticity. Since rubber elasticity and the elasticity of gases are both entropy-induced, a rubber balloon represents a compromise between the entropic tendency of a gas to expand and the entropic tendency of rubber to contract. Thus rubber and rubber balloons furnish instructive paradigms of thermodynamics. This monograph treats the subject at a level appropriate for post-graduate studies.




Rubberlike Elasticity


Book Description

Elastomers and rubberlike materials form a critical component in diverse applications that range from tyres to biomimetics and are used in chemical, biomedical, mechanical and electrical engineering. This updated and expanded edition provides an elementary introduction to the physical and molecular concepts governing elastic behaviour, with a particular focus on elastomers. The coverage of fundamental principles has been greatly extended and fully revised, with analogies to more familiar systems such as gases, producing an engaging approach to these phenomena. Dedicated chapters on novel uses of elastomers, covering bioelastomers, filled elastomers and liquid crystalline elastomers, illustrate the established and emerging applications at the forefront of physical science. With a list of experiments and demonstrations, problem sets and solutions, this is a self-contained introduction to the topic for graduate students, researchers and industrialists working in the applied fields of physics and chemistry, polymer science and engineering.




Constitutive Models for Rubber


Book Description

This text aims to enable the experience accumulated by engineers and the research community in materials science, continuum mechanics and applied mathematics to be shared. In this way, the design and analysis of rubber components using the Finite Element Method should be enhanced.




Structures and Properties of Rubberlike Networks


Book Description

Rubber elasticity is an important sub-field of polymer science. This book is in many ways a sequel to the authors' previous, more introductory book, Rubberlike Elasticity: A Molecular Primer (Wiley-Interscience, 1988), and will in some respects replace the now classic book by L.R.G. Treloar, The Physics of Rubber Elasticity (Oxford, 1975). The present book has much in common with its predecessor, in particular its strong emphasis on molecular concepts and theories. Similarly, only equilibrium properties are covered in any detail. Though this book treats much of the same subject matter, it is a more comprehensive, more up-to-date, and somewhat more sophisticated treatment.




Liquid Crystal Elastomers


Book Description

This text is a primer for liquid crystals, polymers, rubber and elasticity. It is directed at physicists, chemists, material scientists, engineers and applied mathematicians at the graduate student level and beyond.




The Physics of Rubber Elasticity


Book Description

This book provides a critical review of the equilibrium elastic properties of rubber, together with the kinetic-theory background. It is suitable for the non-specialist and the emphasis is on the physical reality embodied in the mathematical formulations. Polymer science had developed greatly since the second edition of this text in 1958, and the two main advances - the refinements of the network theory and associated thermodynamic analysis, and the development of thephenomenological or non-molecular approach to the subject - are both reflected in the structure of this third edition.




Polymer Physics


Book Description

This book is the result of my teaching efforts during the last ten years at the Royal Institute of Technology. The purpose is to present the subject of polymer physics for undergraduate and graduate students, to focus the fundamental aspects of the subject and to show the link between experiments and theory. The intention is not to present a compilation of the currently available literature on the subject. Very few reference citations have thus been made. Each chapter has essentially the same structure: starling with an introduction, continuing with the actual subject, summarizing the chapter in 30D-500 words, and finally presenting problems and a list of relevant references for the reader. The solutions to the problems presented in Chapters 1-12 are given in Chapter 13. The theme of the book is essentially polymer science, with the exclusion of that part dealing directly with chemical reactions. The fundamentals in polymer science, including some basic polymer chemistry, are presented as an introduction in the first chapter. The next eight chapters deal with different phenomena (processes) and states of polymers. The last three chapters were written with the intention of making the reader think practically about polymer physics. How can a certain type of problem be solved? What kinds of experiment should be conducted? This book would never have been written without the help of my friend and adviser, Dr Anthony Bristow, who has spent many hours reading through the manuscript. criticizing the content.




Rubber to Rubber Adhesion


Book Description

RUBBER TO RUBBER ADHESION Readers will get helpful ideas and in-depth knowledge about various aspects of rubber to rubber adhesion with particular reference to theory and practice. This book covers various aspects of rubber to rubber adhesion which is important theoretically, as well as having practical implications. Rubber is a polymer whose glass transition temperature is well below the room temperature and hence the chains are very mobile at room and higher temperatures, making the material very versatile. Rubber is used in a large number of applications ranging from underground mining to tire to space vehicles. In all these cases, compounded rubbers are used in laminates and joined. The higher the adhesion, the higher will be the joint strength. The principles taught in adhesion science and technology are extensively used to prepare better joints and more useful products. The book serves to satisfy a wide range of disciplines (polymers, materials, chemical, chemistry, mechanical, etc.) and starts with an introduction on rubber, then characterization of rubber, rubber surface and joints and, finally, other chapters on rubber to rubber adhesion. Scientific aspects to understand the technology are highlighted. It gives a comprehensive treatment on adhesion between unvulcanized elastomers, self-healing of elastomers, adhesion between compounded elastomers by co-crosslinking, adhesion between partially vulcanized compounded rubber and partially vulcanized compounded rubber, adhesion between vulcanized rubber and unvulcanized rubber- or partially vulcanized rubber, and adhesion between vulcanized rubber and vulcanized rubber. Audience The book will be used by academicians in polymer science, materials science, chemical and mechanical engineering, chemistry, R & D personnel, industry people, as well as rubber and adhesion practitioners.