Rudiments of Ramsey Theory


Book Description

In every sufficiently large structure which has been partitioned there will always be some well-behaved structure in one of the parts. This takes many forms. For example, colorings of the integers by finitely many colors must have long monochromatic arithmetic progressions (van der Waerden's theorem); and colorings of the edges of large graphs must have monochromatic subgraphs of a specified type (Ramsey's theorem). This book explores many of the basic results and variations of this theory. Since the first edition of this book there have been many advances in this field. In the second edition the authors update the exposition to reflect the current state of the art. They also include many pointers to modern results. A co-publication of the AMS and CBMS.




Rudiments of Ramsey Theory


Book Description

It is no exaggeration to say that over the past several decades there has been a veritable explosion of activity in the general field of combinatorics. Ramsey theory, in particular, has shown remarkable growth. This book gives a picture of the state of the art of Ramsey theory at the time of Graham's CBMS lectures. In keeping with the style of the lectures, the exposition is informal. However, complete proofs are given for most of the basic results presented. In addition, many useful results may be found in the exercises and problems. Loosely speaking, Ramsey theory is the branch of combinatorics that deals with structures that are preserved under partitions. Typically, one looks at the following kind of question: If a particular structure (e.g., algebraic, combinatorial or geometric) is arbitrarily partitioned into finitely many classes, what kinds of substructures must always remain intact in at least one of the classes? At the time of these lectures, a number of spectacular advances had been made in the field of Ramsey theory. These include: the work of Szemeredi and Furstenberg settling the venerable conjecture of Erdos and Turan, the Nesetril-Rodl theorems on induced Ramsey properties, the results of Paris and Harrington on ``large'' Ramsey numbers and undecidability in first-order Peano arithmetic, Deuber's solution to the old partition regularity conjecture of Rado, Hindman's surprising generalization of Schur's theorem, and the resolution of Rota's conjecture on Ramsey's theorem for vector spaces by Graham, Leeb and Rothschild. It has also become apparent that the ideas and techniques of Ramsey theory span a rather broad range of mathematical areas, interacting in essential ways with parts of set theory, graph theory, combinatorial number theory, probability theory, analysis and even theoretical computer science. These lecture notes lay out the foundation on which much of this work is based. Relatively little specialized mathematical background is required for this book. It should be accessible to upper division students.




An Introduction to Ramsey Theory


Book Description

This book takes the reader on a journey through Ramsey theory, from graph theory and combinatorics to set theory to logic and metamathematics. Written in an informal style with few requisites, it develops two basic principles of Ramsey theory: many combinatorial properties persist under partitions, but to witness this persistence, one has to start with very large objects. The interplay between those two principles not only produces beautiful theorems but also touches the very foundations of mathematics. In the course of this book, the reader will learn about both aspects. Among the topics explored are Ramsey's theorem for graphs and hypergraphs, van der Waerden's theorem on arithmetic progressions, infinite ordinals and cardinals, fast growing functions, logic and provability, Gödel incompleteness, and the Paris-Harrington theorem. Quoting from the book, “There seems to be a murky abyss lurking at the bottom of mathematics. While in many ways we cannot hope to reach solid ground, mathematicians have built impressive ladders that let us explore the depths of this abyss and marvel at the limits and at the power of mathematical reasoning at the same time. Ramsey theory is one of those ladders.”




The Probabilistic Method


Book Description

Praise for the Third Edition “Researchers of any kind of extremal combinatorics or theoretical computer science will welcome the new edition of this book.” - MAA Reviews Maintaining a standard of excellence that establishes The Probabilistic Method as the leading reference on probabilistic methods in combinatorics, the Fourth Edition continues to feature a clear writing style, illustrative examples, and illuminating exercises. The new edition includes numerous updates to reflect the most recent developments and advances in discrete mathematics and the connections to other areas in mathematics, theoretical computer science, and statistical physics. Emphasizing the methodology and techniques that enable problem-solving, The Probabilistic Method, Fourth Edition begins with a description of tools applied to probabilistic arguments, including basic techniques that use expectation and variance as well as the more advanced applications of martingales and correlation inequalities. The authors explore where probabilistic techniques have been applied successfully and also examine topical coverage such as discrepancy and random graphs, circuit complexity, computational geometry, and derandomization of randomized algorithms. Written by two well-known authorities in the field, the Fourth Edition features: Additional exercises throughout with hints and solutions to select problems in an appendix to help readers obtain a deeper understanding of the best methods and techniques New coverage on topics such as the Local Lemma, Six Standard Deviations result in Discrepancy Theory, Property B, and graph limits Updated sections to reflect major developments on the newest topics, discussions of the hypergraph container method, and many new references and improved results The Probabilistic Method, Fourth Edition is an ideal textbook for upper-undergraduate and graduate-level students majoring in mathematics, computer science, operations research, and statistics. The Fourth Edition is also an excellent reference for researchers and combinatorists who use probabilistic methods, discrete mathematics, and number theory. Noga Alon, PhD, is Baumritter Professor of Mathematics and Computer Science at Tel Aviv University. He is a member of the Israel National Academy of Sciences and Academia Europaea. A coeditor of the journal Random Structures and Algorithms, Dr. Alon is the recipient of the Polya Prize, The Gödel Prize, The Israel Prize, and the EMET Prize. Joel H. Spencer, PhD, is Professor of Mathematics and Computer Science at the Courant Institute of New York University. He is the cofounder and coeditor of the journal Random Structures and Algorithms and is a Sloane Foundation Fellow. Dr. Spencer has written more than 200 published articles and is the coauthor of Ramsey Theory, Second Edition, also published by Wiley.




Basics of Ramsey Theory


Book Description

Basics of Ramsey Theory serves as a gentle introduction to Ramsey theory for students interested in becoming familiar with a dynamic segment of contemporary mathematics that combines ideas from number theory and combinatorics. The core of the of the book consists of discussions and proofs of the results now universally known as Ramsey’s theorem, van der Waerden’s theorem, Schur’s theorem, Rado’s theorem, the Hales–Jewett theorem, and the Happy End Problem of Erdős and Szekeres. The aim is to present these in a manner that will be challenging but enjoyable, and broadly accessible to anyone with a genuine interest in mathematics. Features Suitable for any undergraduate student who has successfully completed the standard calculus sequence of courses and a standard first (or second) year linear algebra course Filled with visual proofs of fundamental theorems Contains numerous exercises (with their solutions) accessible to undergraduate students Serves as both a textbook or as a supplementary text in an elective course in combinatorics and aimed at a diverse group of students interested in mathematics




Ramsey Theory


Book Description

This book explores the theory’s history, recent developments, and some promising future directions through invited surveys written by prominent researchers in the field. The first three surveys provide historical background on the subject; the last three address Euclidean Ramsey theory and related coloring problems. In addition, open problems posed throughout the volume and in the concluding open problem chapter will appeal to graduate students and mathematicians alike.




Ramsey Theory on the Integers


Book Description

Ramsey theory is the study of the structure of mathematical objects that is preserved under partitions. In its full generality, Ramsey theory is quite powerful, but can quickly become complicated. By limiting the focus of this book to Ramsey theory applied to the set of integers, the authors have produced a gentle, but meaningful, introduction to an important and enticing branch of modern mathematics. Ramsey Theory on the Integers offers students a glimpse into the world of mathematical research and the opportunity for them to begin pondering unsolved problems. For this new edition, several sections have been added and others have been significantly updated. Among the newly introduced topics are: rainbow Ramsey theory, an "inequality" version of Schur's theorem, monochromatic solutions of recurrence relations, Ramsey results involving both sums and products, monochromatic sets avoiding certain differences, Ramsey properties for polynomial progressions, generalizations of the Erdős-Ginzberg-Ziv theorem, and the number of arithmetic progressions under arbitrary colorings. Many new results and proofs have been added, most of which were not known when the first edition was published. Furthermore, the book's tables, exercises, lists of open research problems, and bibliography have all been significantly updated. This innovative book also provides the first cohesive study of Ramsey theory on the integers. It contains perhaps the most substantial account of solved and unsolved problems in this blossoming subject. This breakthrough book will engage students, teachers, and researchers alike.




Ramsey Theory


Book Description

Praise for the First Edition "Anyone interested in getting an introduction to Ramsey theorywill find this illuminating..." --MAA Reviews Covering all the major concepts, proofs, and theorems, theSecond Edition of Ramsey Theory is the ultimate guideto understanding every aspect of Shelah's proof, as well asthe original proof of van der Waerden. The book offers a historicalperspective of Ramsey's fundamental paper from 1930 andErdos' and Szekeres' article from 1935, while placingthe various theorems in the context of T. S. Motzkin'sthought on the subject of "Complete Disorder isImpossible." Ramsey Theory, Second Edition includes new and excitingcoverage of Graph Ramsey Theory and Euclidean Ramsey Theory andalso relates Ramsey Theory to other areas in discrete mathematics.In addition, the book features the unprovability results of Parisand Harrington and the methods from topological dynamics pioneeredby Furstenburg. Featuring worked proofs and outside applications, RamseyTheory, Second Edition addresses: * Ramsey and density theorems on both broad and meticulousscales * Extentions and implications of van der Waerden's Theorem,the Hales-Jewett Theorem, Roth's Theorem, Rado'sTheorem, Szemeredi's Theorem, and the Shelah Proof * Regular homogeneous and nonhomogeneous systems andequations * Special cases and broader interdisciplinary applications ofRamsey Theory principles An invaluable reference for professional mathematicians workingin discrete mathematics, combinatorics, and algorithms, RamseyTheory, Second Edition is the definitive work on thesubject.




Lectures on Field Theory and Topology


Book Description

These lectures recount an application of stable homotopy theory to a concrete problem in low energy physics: the classification of special phases of matter. While the joint work of the author and Michael Hopkins is a focal point, a general geometric frame of reference on quantum field theory is emphasized. Early lectures describe the geometric axiom systems introduced by Graeme Segal and Michael Atiyah in the late 1980s, as well as subsequent extensions. This material provides an entry point for mathematicians to delve into quantum field theory. Classification theorems in low dimensions are proved to illustrate the framework. The later lectures turn to more specialized topics in field theory, including the relationship between invertible field theories and stable homotopy theory, extended unitarity, anomalies, and relativistic free fermion systems. The accompanying mathematical explanations touch upon (higher) category theory, duals to the sphere spectrum, equivariant spectra, differential cohomology, and Dirac operators. The outcome of computations made using the Adams spectral sequence is presented and compared to results in the condensed matter literature obtained by very different means. The general perspectives and specific applications fuse into a compelling story at the interface of contemporary mathematics and theoretical physics.