Rydberg States of Atoms and Molecules


Book Description

After the development of the tunable laser, experimental studies in Rydberg states of atoms and molecules grew at a remarkable rate. Fundamental questions were resolved, opening doors for more experimental activity and theoretical inquiry. In this comprehensive summary of knowledge of Rydberg states, which was originally published in 1983, Professors Stebbings and Dunning brought together a select collection of experimental and theoretical discussions. Composed of works by the acknowledged leaders in the field, this volume will be of value for anyone with an interest in molecular physics.




Rydberg Atoms


Book Description

This book provides a comprehensive description of the physics of Rydberg atoms, highlighting their remarkable properties by reference to their behavior in a wide range of physical situations. Following an overview of the basic properties of Rydberg atoms, their interactions with electric and magnetic fields are analyzed in detail. The collisions of Rydberg atoms with neutral and charged species are described, and the use of multichannel quantum defect theory in the study of Rydberg atomic systems is discussed.




Reference Data on Atoms, Molecules, and Ions


Book Description

This reference book contains information about the structure and properties of atomic and molecular particles, as well as some of the nuclear parameters. It includes data which can be of use when studying atomic and molecular processes in the physics of gases, chemistry of gases and gas optics, in plasma physics and plasma chemistry, in physical chemistry and radiation chemistry, in geophysics, astrophysics, solid-state physics and a variety of cross-discipli nary fields of science and technology. Our aim was to collect carefully selected and estimated numerical values for a wide circle of microscopic parameters in a relatively "not thick" book. These values are of constant use in the work of practical investigators. In essence, the book represents a substantially revised and extended edi tion of our reference book published in Russian in 1980. Two main reasons made it necessary to rework the material. On the one hand, a great deal of new high-quality data has appeared in the past few years and furthermore we have enlisted many sources of information previously inaccessible to us. On the other hand, we have tried to insert extensive information on new, rapidly progressing branches of physical research, such as multiply charged ions, Rydberg atoms, van der Waals and excimer molecules, complex ions, etc. All this brings us to the very edge of studies being carried out in the field.




Atoms, Molecules and Photons


Book Description

This introduction to Atomic and Molecular Physics explains how our present model of atoms and molecules has been developed over the last two centuries both by many experimental discoveries and, from the theoretical side, by the introduction of quantum physics to the adequate description of micro-particles. It illustrates the wave model of particles by many examples and shows the limits of classical description. The interaction of electromagnetic radiation with atoms and molecules and its potential for spectroscopy is outlined in more detail and in particular lasers as modern spectroscopic tools are discussed more thoroughly. Many examples and problems with solutions are offered to encourage readers to actively engage in applying and adapting the fundamental physics presented in this textbook to specific situations. Completely revised third edition with new sections covering all actual developments, like photonics, ultrashort lasers, ultraprecise frequency combs, free electron lasers, cooling and trapping of atoms, quantum optics and quantum information.




An Introduction to Cold and Ultracold Chemistry


Book Description

This book provides advanced undergraduate and graduate students with an overview of the fundamentals of cold and ultracold chemistry. Beginning with definitions of what cold and ultracold temperatures mean in chemistry, the book then takes the student through the essentials of scattering theory (classical and quantum mechanical), light-matter interaction, reaction dynamics and Rydberg physics. The author aims to show the reader the richness of the topic while motivating students to understand the fundamentals of these intriguing reactions and underlying connecting relationships. Including material which was previously only found in specialized review articles, this book provides students working in the fields of ultracold gases, chemical physics and physical chemistry with the tools they need to immerse themselves in the realm of cold and ultracold chemistry. This book opens up the exciting chemical laws which govern chemistry at low temperatures to the next generation of researchers.




Atoms and Molecules Interacting with Light


Book Description

Focusing on atom-light interactions and containing numerous exercises, this in-depth textbook prepares students for research in a fast-growing field.




Atoms, Molecules and Photons


Book Description

This introduction to Atomic and Molecular Physics explains how our present model of atoms and molecules has been developed during the last two centuries by many experimental discoveries and from the theoretical side by the introduction of quantum physics to the adequate description of micro-particles. It illustrates the wave model of particles by many examples and shows the limits of classical description. The interaction of electromagnetic radiation with atoms and molecules and its potential for spectroscopy is outlined in more detail and in particular lasers as modern spectroscopic tools are discussed more thoroughly. Many examples and problems with solutions should induce the reader to an intense active cooperation.




Controlling the Quantum World


Book Description

As part of the Physics 2010 decadal survey project, the Department of Energy and the National Science Foundation requested that the National Research Council assess the opportunities, over roughly the next decade, in atomic, molecular, and optical (AMO) science and technology. In particular, the National Research Council was asked to cover the state of AMO science, emphasizing recent accomplishments and identifying new and compelling scientific questions. Controlling the Quantum World, discusses both the roles and challenges for AMO science in instrumentation; scientific research near absolute zero; development of extremely intense x-ray and laser sources; exploration and control of molecular processes; photonics at the nanoscale level; and development of quantum information technology. This book also offers an assessment of and recommendations about critical issues concerning maintaining U.S. leadership in AMO science and technology.




Higher Excited States of Polyatomic Molecules


Book Description

Higher Excited States of Polyatomic Molecules, Volume I focuses on the spectra in the vacuum-ultraviolet region between 50,000 and 100,000 cm-1. This book explores the higher excitations in molecules beyond 50,000 cm-1. Organized into three chapters, this volume starts with an overview of the excited-state properties of a molecule and the excited-state ionization potential. This book then proceeds with a discussion of the original classification of the properties as well as the types of excitations observed in the vacuum-ultraviolet. Other chapters discuss photoelectron spectroscopy, which is an independent, self-sustaining branch of molecular spectroscopy. This text examines as well the distinction between valence shell and Rydberg excitations. The final chapter deals with several topics, including the saturated molecules that are classified as having all valence electrons, the alkene absorption spectra, and the spectroscopic data on boron compounds. Analytical chemists, photochemists, molecular spectroscopists, and researchers will find this book extremely useful.




Molecular Quantum Mechanics


Book Description

This text unravels those fundamental physical principles which explain how all matter behaves. It takes us from the foundations of quantum mechanics, through quantum models of atomic, molecular, and electronic structure, and on to discussions of spectroscopy, and the electronic and magnetic properties of molecules.