Human-Like Decision Making and Control for Autonomous Driving


Book Description

This book details cutting-edge research into human-like driving technology, utilising game theory to better suit a human and machine hybrid driving environment. Covering feature identification and modelling of human driving behaviours, the book explains how to design an algorithm for decision making and control of autonomous vehicles in complex scenarios. Beginning with a review of current research in the field, the book uses this as a springboard from which to present a new theory of human-like driving framework for autonomous vehicles. Chapters cover system models of decision making and control, driving safety, riding comfort and travel efficiency. Throughout the book, game theory is applied to human-like decision making, enabling the autonomous vehicle and the human driver interaction to be modelled using noncooperative game theory approach. It also uses game theory to model collaborative decision making between connected autonomous vehicles. This framework enables human-like decision making and control of autonomous vehicles, which leads to safer and more efficient driving in complicated traffic scenarios. The book will be of interest to students and professionals alike, in the field of automotive engineering, computer engineering and control engineering.




Human-like Decision-making and Control for Automated Driving


Book Description

The on-vehicle automation system is primarily designed to replace the human driver during driving to enhance the performance and avoid possible fatalities. However, current implementations in automated vehicles (AVs) generally neglect that human imperfection and preference do not always lead to negative consequences, which prevents achieving optimized vehicle performance and maximized road safety. Human-like Decision-making and Control for Automated Driving takes a step forward to address breaking through the limitation of future automation applications, investigating in depth: Human driving feature modeling and analysis Personalized motion control for AVs Human-like decision making for AVs Click here to access the full SAE EDGETM Research Report portfolio. https://doi.org/10.4271/EPR2022005







Inventive Systems and Control


Book Description

This book presents selected papers from the 5th International Conference on Inventive Systems and Control (ICISC 2021), held on 7–8 January 2021 at JCT College of Engineering and Technology, Coimbatore, India. The book includes an analysis of the class of intelligent systems and control techniques that utilises various artificial intelligence technologies, where there are no mathematical models and systems available to make them remain controlled. Inspired by various existing intelligent techniques, the primary goal is to present the emerging innovative models to tackle the challenges faced by the existing computing and communication technologies. The proceedings of ICISC 2021 aim at presenting the state-of-the-art research developments, trends, and solutions for the challenges faced by the intelligent systems and control community with the real-world applications. The included research articles feature the novel and unpublished research works on intelligent system representation and control.




Human-Centered Design and User Experience


Book Description

Proceedings of the AHFE International Conference on Human Factors in Design, Engineering, and Computing (AHFE 2023 Hawaii Edition), Honolulu, Hawaii, USA 4-6, December 2023




Pattern Recognition


Book Description

This book constitutes the refereed proceedings of the 15th Mexican Conference on Pattern Recognition, MCPR 2023, held in Tepic, Mexico, during June 21–24, 2023. The 30 full papers presented in this book were carefully reviewed and selected from 61 submissions. The papers are divided into the following topical sections: pattern recognition and machine learning techniques; deep learning and neural networks; medical applications of pattern recognition; language processing and recognition; and industrial applications of pattern recognition.




Decision-making Strategies for Automated Driving in Urban Environments


Book Description

This book describes an effective decision-making and planning architecture for enhancing the navigation capabilities of automated vehicles in the presence of non-detailed, open-source maps. The system involves dynamically obtaining road corridors from map information and utilizing a camera-based lane detection system to update and enhance the navigable space in order to address the issues of intrinsic uncertainty and low-fidelity. An efficient and human-like local planner then determines, within a probabilistic framework, a safe motion trajectory, ensuring the continuity of the path curvature and limiting longitudinal and lateral accelerations. LiDAR-based perception is then used to identify the driving scenario, and subsequently re-plan the trajectory, leading in some cases to adjustment of the high-level route to reach the given destination. The method has been validated through extensive theoretical and experimental analyses, which are reported here in detail.




Autonomous Driving


Book Description

This book takes a look at fully automated, autonomous vehicles and discusses many open questions: How can autonomous vehicles be integrated into the current transportation system with diverse users and human drivers? Where do automated vehicles fall under current legal frameworks? What risks are associated with automation and how will society respond to these risks? How will the marketplace react to automated vehicles and what changes may be necessary for companies? Experts from Germany and the United States define key societal, engineering, and mobility issues related to the automation of vehicles. They discuss the decisions programmers of automated vehicles must make to enable vehicles to perceive their environment, interact with other road users, and choose actions that may have ethical consequences. The authors further identify expectations and concerns that will form the basis for individual and societal acceptance of autonomous driving. While the safety benefits of such vehicles are tremendous, the authors demonstrate that these benefits will only be achieved if vehicles have an appropriate safety concept at the heart of their design. Realizing the potential of automated vehicles to reorganize traffic and transform mobility of people and goods requires similar care in the design of vehicles and networks. By covering all of these topics, the book aims to provide a current, comprehensive, and scientifically sound treatment of the emerging field of “autonomous driving".







Proceedings of 2023 Chinese Intelligent Automation Conference


Book Description

The book presents selected research papers from the 2023 Chinese Intelligent Automation Conference (CIAC2023), held in Nanjing, China, on October 2-5, 2023. It covers a wide range of topics including intelligent control, robotics, artificial intelligence, pattern recognition, unmanned systems, IoT, and machine learning. It includes original research and the latest advances in the field of intelligent automation. Engineers and researchers from academia, industry, and government can gain valuable insights into solutions combining ideas from multiple disciplines in this field.