Salicylic Acid: A Multifaceted Hormone


Book Description

This book provides an overview of current knowledge, ideas and trends in the field of induced acclimation of plants to environmental challenges. Presenting recent advances in our understanding of the importance of salicylic acid, it paves the way for deciphering the precise role of salicylic acid in the field of plant physiology, biochemistry and agronomy, and breeding stress-tolerant and high-yielding sustainable transgenic crops. Adopting a mechanistic approach, the book offers valuable information on the role of salicylic acid in combating varied abiotic stresses. Plants are challenged by biotic and abiotic stresses. They adjust to changing environmental conditions by adopting various measures to induce regulatory self-defense pathways in response to different stresses in order to maintain their genetic potential to optimally grow and reproduce. To minimize cellular damage caused by such stresses, phytohormones provide a number of signaling networks involving developmental processes and plant responses to environmental stress. Phytohormones are potential tools for sustainable agriculture in the future. Significant advances have been made in identifying and understanding plant-hormone signaling, especially salicylic acid.




Mechanism of Plant Hormone Signaling under Stress, 2 Volume Set


Book Description

Bei vielen physiologischen und Entwicklungsprozessen sowie bei Stressreaktionen spielen Hormonsignale, die Pflanzen aussenden, eine große Rolle. Mit Aufkommen der neuen post-genomischen Molekulartechnologien sind auch unsere Möglichkeiten, die Wirkung von Hormonsignalen auf die Genexpression und adaptive Prozesse zu verstehen, heute einzigartig. Wenn wir die molekularen Grundlagen dieser Prozesse entschlüsseln, ergeben sich für die Entwicklung neuer Pflanzenbiotechnologien und verbesserter Varianten von Kulturpflanzen große Chancen. Die Themen dieses Buches legen den Schwerpunkt auf die Genomik und funktionale Aspekte der Genomik. Damit lassen sich globale Veränderungen und Veränderungen auf Ebene des gesamten Genoms unter spezifischen Stressbedingungen verstehen. Mit funktionalen Werkzeugen der Genomik kann der Mechanismus von Phytohormonsignalen in Verbindung mit den zugehörigen Zielgenen systematischer definiert werden. Die integrierte Analyse von Phytohormonsignalen bei einzelnen oder mehreren Stressbedingungen ist unter Umständen für die Entwicklung stresstoleranter Kulturpflanzen eine außergewöhnliche Möglichkeit. Mechanism of Plant Hormone Signaling Under Stress beschreibt die jüngsten Fortschritte und zeigt, wie heutige Erkenntnisse in der wissenschaftlichen Erforschung von Pflanzen und Kulturpflanzen Anwendung finden. Dieses Buch ist für Pflanzenbiologen, Biologen, die sich mit Stressfaktoren beschäftigen, Forscher im Bereich Pflanzenbiotechnologie, Studenten und Dozenten überaus nützlich.




Protective Chemical Agents in the Amelioration of Plant Abiotic Stress


Book Description

A guide to the chemical agents that protect plants from various environmental stressors Protective Chemical Agents in the Amelioration of Plant Abiotic Stress offers a guide to the diverse chemical agents that have the potential to mitigate different forms of abiotic stresses in plants. Edited by two experts on the topic, the book explores the role of novel chemicals and shows how using such unique chemical agents can tackle the oxidative damages caused by environmental stresses. Exogenous application of different chemical agents or chemical priming of seeds presents opportunities for crop stress management. The use of chemical compounds as protective agents has been found to improve plant tolerance significantly in various crop and non-crop species against a range of different individually applied abiotic stresses by regulating the endogenous levels of the protective agents within plants. This important book: Explores the efficacy of various chemical agents to eliminate abiotic stress Offers a groundbreaking look at the topic and reviews the most recent advances in the field Includes information from noted authorities on the subject Promises to benefit agriculture under stress conditions at the ground level Written for researchers, academicians, and scientists, Protective Chemical Agents in the Amelioration of Plant Abiotic Stress details the wide range of protective chemical agents, their applications, and their intricate biochemical and molecular mechanism of action within the plant systems during adverse situations.




Salicylic Acid Signalling in Plants


Book Description

Although the role of salicylic acid (SA) in plant physiological processes has been widely studied for a long time, many open questions remain several fields. The importance of SA synthesis is illustrated by the four review papers published in this Special Issue that represent a wide range of approaches, indicating that a growing body of evidence needs to be summarized in a thought-provoking manner. The investigations presented in the six original studies extend upon the understanding of the involvement of SA in anthracnose infection and light-dependent cold acclimation, highlighting the use of SA mutant Arabidopsis plants. The studies also focused on the application of novel SA analogs or SA in combination with Rhizobacteria inoculation. We hope that the four reviews and six studies provide a deeper understanding of the role of SA and its complex tasks, as well as a new direction for research to address gaps and open questions, including both at the metabolite and gene expression levels, in the use of agriculturally important crop or mutant model plants, and in both basic research and practical applications.




Salicylic Acid Signaling Networks


Book Description

The small phenolic compound salicylic acid (SA) is critical for plant defense against a broad spectrum of pathogens. SA is also involved in multi-layered defense responses, from pathogen-associated molecular pattern triggered basal defense, resistance gene-mediated defense, to systemic acquired resistance. Recent decades have witnessed tremendous progress towards our understanding of SA-mediated signaling networks. Many genes have been identified to have direct or indirect effect on SA biosynthesis or to regulate SA accumulation. Several SA receptors have been identified and characterization of these receptors has shed light on the mechanisms of SA-mediated defense signaling, which encompass chromosomal remodeling, DNA repair, epigenetics, to transcriptional reprogramming. Molecules from plant-associated microbes have been identified, which manipulate SA levels signaling. SA does not act alone. It engages in crosstalk with other signaling pathways, such as those mediated by other phytohormones, in an agonistic or antagonistic manner, depending on hormones and pathosystems. Besides affecting plant innate immunity, SA has also been implicated in other cellular processes, such as flowering time determination, lipid metabolism, circadian clock control, and abiotic stress responses, possibly contributing to the regulation of plant development. The multifaceted function of SA makes it critically important to further identify genes involved in SA signaling networks, understand their modes of action, and delineate interactions among the components of SA signaling networks. In addition, genetic manipulation of genes involved in SA signaling networks has also provided a promising approach to enhance disease resistance in economically important plants. This ebook collects articles in the research topic “Salicylic Acid Signaling Networks.” For this collection we solicited reviews, perspectives, and original research articles that highlight recent exciting progress on the understanding of molecular mechanisms underlying SA-mediated defense, SA-crosstalk with other pathways and how microbes impact these events.




Biotechnology in Plant Disease Control


Book Description

This study presents current advances in the biotechnological control of plant disease. The contributors discuss topics including the impact of biotechnology on plant breeding, molecular genetic research in disease control and the improvement of biological control through biotechnical methods.




Photosynthesis, Productivity, and Environmental Stress


Book Description

A guide to environmental fluctuations that examines photosynthesis under both controlled and stressed conditions Photosynthesis, Productivity and Environmental Stress is a much-needed guide that explores the topics related to photosynthesis (both terrestrial and aquatic) and puts the focus on the basic effect of environmental fluctuations. The authors—noted experts on the topic—discuss photosynthesis under both controlled and stressed conditions and review new techniques for mitigating stressors including methods such as transgeneics, proteomics, genomics, ionomics, metabolomics, micromics, and more. In order to feed our burgeoning world population, it is vital that we must increase food production. Photosynthesis is directly related to plant growth and crop production and any fluctuation in the photosynthetic activity imposes great threat to crop productivity. Due to the environmental fluctuations plants are often exposed to the different environmental stresses that cause decreased photosynthetic rate and problems in the plant growth and development. This important book addresses this topic and: Covers topics related to terrestrial and aquatic photosynthesis Highlights the basic effect of environmental fluctuations Explores common stressors such as drought, salinity, alkalinity, temperature, UV-radiations, oxygen deficiency, and more Contains methods and techniques for improving photosynthetic efficiency for greater crop yield Written for biologists and environmentalists, Photosynthesis, Productivity and Environmental Stress offers an overview of the stressors affecting photosynthesis and includes possible solutions for improved crop production.




Plant Hormones


Book Description

Plant hormones play a crucial role in controlling the way in which plants grow and develop. While metabolism provides the power and building blocks for plant life, it is the hormones that regulate the speed of growth of the individual parts and integrate them to produce the form that we recognize as a plant. This book is a description of these natural chemicals: how they are synthesized and metabolized, how they act at both the organismal and molecular levels, how we measure them, a description of some of the roles they play in regulating plant growth and development, and the prospects for the genetic engineering of hormone levels or responses in crop plants. This is an updated revision of the third edition of the highly acclaimed text. Thirty-three chapters, including two totally new chapters plus four chapter updates, written by a group of fifty-five international experts, provide the latest information on Plant Hormones, particularly with reference to such new topics as signal transduction, brassinosteroids, responses to disease, and expansins. The book is not a conference proceedings but a selected collection of carefully integrated and illustrated reviews describing our knowledge of plant hormones and the experimental work that is the foundation of this information. The Revised 3rd Edition adds important information that has emerged since the original publication of the 3rd edition. This includes information on the receptors for auxin, gibberellin, abscisic acid and jasmonates, in addition to new chapters on strigolactones, the branching hormones, and florigen, the flowering hormone.




SALICYLIC ACID


Book Description

The book “Salicylic acid: A Plant Hormone” was first published in 1997 and was praised for its excellent balance of traditional and modern topics. This time, we're building on the success of the prior edition to provide an even more effective second edition. The present book is comprised of 16 chapters highlighting the updated mechanisms of its biosynthesis, physiological role, its action in response to water deficit, relationship of SA with signal transduction, transport of SA and related compounds. Further, the interplay between environmental signals and SA, its impact on transport and distribution of sugars, salicylic acid mediated stress-induced flowering and some aspects of interplay of SA with JA during the establishment of plant resistance to pathogens with different types of nutrition and participation of peroxidases have also been discussed at length. Potential use of SA in food production and its efficiency on post-harvest of perishable crops as well as practical use of SA are also covered. ​ ​




Abiotic Stress Responses in Plants


Book Description

Abiotic stress cause changes in soil-plant-atmosphere continuum and is responsible for reduced yield in several major crops. Therefore, the subject of abiotic stress response in plants - metabolism, productivity and sustainability - is gaining considerable significance in the contemporary world. Abiotic stress is an integral part of “climate change,” a complex phenomenon with a wide range of unpredictable impacts on the environment. Prolonged exposure to these abiotic stresses results in altered metabolism and damage to biomolecules. Plants evolve defense mechanisms to tolerate these stresses by upregulation of osmolytes, osmoprotectants, and enzymatic and non-enzymatic antioxidants, etc. This volume deals with abiotic stress-induced morphological and anatomical changes, abberations in metabolism, strategies and approaches to increase salt tolerance, managing the drought stress, sustainable fruit production and postharvest stress treatments, role of glutathione reductase, flavonoids as antioxidants in plants, the role of salicylic acid and trehalose in plants, stress-induced flowering. The role of soil organic matter in mineral nutrition and fatty acid profile in response to heavy metal stress are also dealt with. Proteomic markers for oxidative stress as a new tools for reactive oxygen species and photosynthesis research, abscisic acid signaling in plants are covered with chosen examples. Stress responsive genes and gene products including expressed proteins that are implicated in conferring tolerance to the plant are presented. Thus, this volume would provides the reader with a wide spectrum of information including key references and with a large number of illustrations and tables. Dr. Parvaiz is Assistant Professor in Botany at A.S. College, Srinagar, Jammu and Kashmir, India. He has completed his post-graduation in Botany in 2000 from Jamia Hamdard New Delhi India. After his Ph.D from the Indian Institute of Technology (IIT) Delhi, India in 2007 he joined the International Centre for Genetic Engineering and Biotechnology, New Delhi. He has published more than 20 research papers in peer reviewed journals and 4 book chapters. He has also edited a volume which is in press with Studium Press Pvt. India Ltd., New Delhi, India. Dr. Parvaiz is actively engaged in studying the molecular and physio-biochemical responses of different plants (mulberry, pea, Indian mustard) under environmental stress. Prof. M.N.V. Prasad is a Professor in the Department of Plant Sciences at the University of Hyderabad, India. He received B.Sc. (1973) and M.Sc. (1975) degrees from Andhra University, India, and the Ph.D. degree (1979) in botany from the University of Lucknow, India. Prasad has published 216 articles in peer reviewed journals and 82 book chapters and conference proceedings in the broad area of environmental botany and heavy metal stress in plants. He is the author, co-author, editor, or co-editor for eight books. He is the recipient of Pitamber Pant National Environment Fellowship of 2007 awarded by the Ministry of Environment and Forests, Government of India.