Instrumentation Reference Book


Book Description

The discipline of instrumentation has grown appreciably in recent years because of advances in sensor technology and in the interconnectivity of sensors, computers and control systems. This 4e of the Instrumentation Reference Book embraces the equipment and systems used to detect, track and store data related to physical, chemical, electrical, thermal and mechanical properties of materials, systems and operations. While traditionally a key area within mechanical and industrial engineering, understanding this greater and more complex use of sensing and monitoring controls and systems is essential for a wide variety of engineering areas--from manufacturing to chemical processing to aerospace operations to even the everyday automobile. In turn, this has meant that the automation of manufacturing, process industries, and even building and infrastructure construction has been improved dramatically. And now with remote wireless instrumentation, heretofore inaccessible or widely dispersed operations and procedures can be automatically monitored and controlled. This already well-established reference work will reflect these dramatic changes with improved and expanded coverage of the traditional domains of instrumentation as well as the cutting-edge areas of digital integration of complex sensor/control systems. - Thoroughly revised, with up-to-date coverage of wireless sensors and systems, as well as nanotechnologies role in the evolution of sensor technology - Latest information on new sensor equipment, new measurement standards, and new software for embedded control systems, networking and automated control - Three entirely new sections on Controllers, Actuators and Final Control Elements; Manufacturing Execution Systems; and Automation Knowledge Base - Up-dated and expanded references and critical standards




Bulk Solids Handling


Book Description




Characterisation of Bulk Solids


Book Description

Handling of powders and bulk solids is a critical industrial technology across a broad spectrum of industries, from minerals processing to bulk and fine chemicals, and the food and pharmaceutical industries, yet is rarely found in the curricula of engineering or chemistry departments. With contributions from leading authors in their respective fields, Characterisation of Bulk Solids provides the reader with a sound understanding of the techniques, importance and application of particulate materials characterisation. It covers the fundamental characteristics of individual particles and bulk particulate materials, and includes discussion of a wide range of measurement techniques, and the use of material characteristics in design and industrial practice. The reader will then be in a better position to diagnose solids handling and processing problems in industry, and to deal with experts and equipment suppliers from an informed standpoint. Written for post-graduate engineers, chemical scientists and technologists at all stages of their industrial career, the book will also serve as an ideal primer in any of the specialist areas to inform further study.




Approaches in Material Sampling


Book Description

Brings together the different fundamental approaches to the problem of material sampling. This book is suitable for scientists working in the research area of material sampling and companies or institutions that have to solve practical sampling problems.




Sampling and Sample Preparation


Book Description

The significant progress achieved in modern instrumental analysis has led to a continuous lowering of detection limits and improved precision. This should in principle permit the reliable and extremely precise analysis of trace compounds mainly trace elements, at levels down to the lowest natural concentrations. However, the frequently observed very high discrepancies between the analyt ical results of different laboratories as well as the deviations from true values are, regrettably, still common in analytical practice. Basic methodological errors at the determination step can usually be minimized or even avoided by carefully per formed quality control measures - e. g. by interlaboratory comparisons and the proper use of certified reference materials. The most severe and often under estimated error sources, however, are those connected with the whole and often extremely complex sampling process, and also to a lesser extent, with sample pre paration prior to analysis. Thus, for these initial steps of an analytical procedure particular experience is needed, as well as a detailed knowledge of the interrela tions between these steps, which always have to be applied with the utmost care. In collaboration with a number of very experienced colleagues working in dif book has tried to contribute to a better ferent research areas, the editor of this understanding of these particular error sources and how they can be overcome in a series of training courses held during the last decade at the "Haus der Technik", Essen, Germany.




Materials Handling Handbook


Book Description

Sponsored jointly by the American Society of Mechanical Engineers and International Material Management Society, this single source reference is designed to meet today's need for updated technical information on planning, installing and operating materials handling systems. It not only classifies and describes the standard types of materials handling equipment, but also analyzes the engineering specifications and compares the operating capabilities of each type. Over one hundred professionals in various areas of materials handling present efficient methods, procedures and systems that have significantly reduced both manufacturing and distribution costs.




Sampling of Heterogeneous and Dynamic Material Systems


Book Description

Although sampling errors inevitably lead to analytical errors, the importance of sampling is often overlooked. The main purpose of this book is to enable the reader to identify every possible source of sampling error in order to derive practical rules to (a) completely suppress avoidable errors, and (b) minimise and estimate the effect of unavoidable errors. In short, the degree of representativeness of the sample can be known by applying these rules. The scope covers the derivation of theories of probabilistic sampling and of bed-blending from a complete theory of heterogeneity which is based on an original, very thorough, qualitative and quantitative analysis of the concepts of homogeneity and heterogeneity. All sampling errors result from the existence of one form or another of heterogeneity. Sampling theory is derived from the theory of heterogeneity by application of a probabilistic operator to a material whose heterogeneity has been characterized either by a simple scalar (a variance: zero-dimensional batches) or by a function (a variogram: one-dimensional batches). A theory of bed-blending (one-dimensional homogenizing) is then easily derived from the sampling theory. The book should be of interest to all analysts and to those dealing with quality, process control and monitoring, either for technical or for commercial purposes, and mineral processing. Although this book is primarily aimed at graduates, large portions of it are suitable for teaching sampling theory to undergraduates as it contains many practical examples provided by the author's 30-year experience as an international consultant. The book also contains useful source material for short courses in Industry.




Fossil Energy Update


Book Description