Sampling in Digital Signal Processing and Control


Book Description

Undoubtably one of the key factors influencing recent technology has been the advent of high speed computational tools. Virtually every advanced engi neering system we come in contact with these days depends upon some form of sampling and digital signal processing. Well known examples are digital tele phone systems, digital recording of audio signals and computer control. These developments have been matched by the appearance of a plethora of books which explain a variety of analysis, synthesis and design tools applica ble to sampled-data systems. The reader might therefore wonder what is distinc tive about the current book. Our observation of the existing literature is that the underlying continuous-time system is usually forgotten once the samples are tak en. The alternative point of view, adopted in this book, is to formulate the analy sis in such a way that the user is constantly reminded of the presence of the under lying continuous-time signals. We thus give emphasis to two aspects of sampled-data analysis: Firstly, we formulate the various algorithms so that the appropriate contin uous-time case is approached as the sampling rate increases. Secondly we place emphasis on the continuous-time output response rath er than simply focusing on the sampled response.




Digital Signal Processing 101


Book Description

Digital Signal Processing 101: Everything You Need to Know to Get Started provides a basic tutorial on digital signal processing (DSP). Beginning with discussions of numerical representation and complex numbers and exponentials, it goes on to explain difficult concepts such as sampling, aliasing, imaginary numbers, and frequency response. It does so using easy-to-understand examples and a minimum of mathematics. In addition, there is an overview of the DSP functions and implementation used in several DSP-intensive fields or applications, from error correction to CDMA mobile communication to airborne radar systems. This book is intended for those who have absolutely no previous experience with DSP, but are comfortable with high-school-level math skills. It is also for those who work in or provide components for industries that are made possible by DSP. Sample industries include wireless mobile phone and infrastructure equipment, broadcast and cable video, DSL modems, satellite communications, medical imaging, audio, radar, sonar, surveillance, and electrical motor control. - Dismayed when presented with a mass of equations as an explanation of DSP? This is the book for you! - Clear examples and a non-mathematical approach gets you up to speed with DSP - Includes an overview of the DSP functions and implementation used in typical DSP-intensive applications, including error correction, CDMA mobile communication, and radar systems




Digital Signal Processing


Book Description

Digital Signal Processing, Second Edition enables electrical engineers and technicians in the fields of biomedical, computer, and electronics engineering to master the essential fundamentals of DSP principles and practice. Many instructive worked examples are used to illustrate the material, and the use of mathematics is minimized for easier grasp of concepts. As such, this title is also useful to undergraduates in electrical engineering, and as a reference for science students and practicing engineers. The book goes beyond DSP theory, to show implementation of algorithms in hardware and software. Additional topics covered include adaptive filtering with noise reduction and echo cancellations, speech compression, signal sampling, digital filter realizations, filter design, multimedia applications, over-sampling, etc. More advanced topics are also covered, such as adaptive filters, speech compression such as PCM, u-law, ADPCM, and multi-rate DSP and over-sampling ADC. New to this edition: - MATLAB projects dealing with practical applications added throughout the book - New chapter (chapter 13) covering sub-band coding and wavelet transforms, methods that have become popular in the DSP field - New applications included in many chapters, including applications of DFT to seismic signals, electrocardiography data, and vibration signals - All real-time C programs revised for the TMS320C6713 DSK - Covers DSP principles with emphasis on communications and control applications - Chapter objectives, worked examples, and end-of-chapter exercises aid the reader in grasping key concepts and solving related problems - Website with MATLAB programs for simulation and C programs for real-time DSP




Digital Signal Processing for Measurement Systems


Book Description

This excellent Senior undergraduate/graduate textbook offers an unprecedented measurement of science perspective on DSP theory and applications, a wealth of definitions and real-life examples making it invaluable for students, while practical.




High Sampling Rate Dynamic Inversion


Book Description

In the past few decades, computational power and speed has made it such that the Controls literature has moved away from addressing issues of finite-word-length (FWL) issues, quantization, and limited computational resources. On the other hand, the signal processing community has studied this issue extensively. In recent years, the introduction of Nano and Microelectromechanical systems (MEMS) with large bandwidth systems requires the use of high-sampling rate controllers. To satisfy such high sampling-rates, fixed-point based platforms such as Field Programmable Gate Arrays (FPGAs) and fixed-point micro-controllers are needed. This trend results in a need for high-sampling rate controllers that are more sophisticated than simple loop shaping while addressing the issues of FWL effects and limited computational resources. The aim of this dissertation is to introduce novel controllers that incorporate signal processing techniques and address these issues with controller design/realizations to control high bandwidth electro-mechanical systems.




Understanding Digital Signal Processing


Book Description

Amazon.com’s Top-Selling DSP Book for Seven Straight Years—Now Fully Updated! Understanding Digital Signal Processing, Third Edition, is quite simply the best resource for engineers and other technical professionals who want to master and apply today’s latest DSP techniques. Richard G. Lyons has updated and expanded his best-selling second edition to reflect the newest technologies, building on the exceptionally readable coverage that made it the favorite of DSP professionals worldwide. He has also added hands-on problems to every chapter, giving students even more of the practical experience they need to succeed. Comprehensive in scope and clear in approach, this book achieves the perfect balance between theory and practice, keeps math at a tolerable level, and makes DSP exceptionally accessible to beginners without ever oversimplifying it. Readers can thoroughly grasp the basics and quickly move on to more sophisticated techniques. This edition adds extensive new coverage of FIR and IIR filter analysis techniques, digital differentiators, integrators, and matched filters. Lyons has significantly updated and expanded his discussions of multirate processing techniques, which are crucial to modern wireless and satellite communications. He also presents nearly twice as many DSP Tricks as in the second edition—including techniques even seasoned DSP professionals may have overlooked. Coverage includes New homework problems that deepen your understanding and help you apply what you’ve learned Practical, day-to-day DSP implementations and problem-solving throughout Useful new guidance on generalized digital networks, including discrete differentiators, integrators, and matched filters Clear descriptions of statistical measures of signals, variance reduction by averaging, and real-world signal-to-noise ratio (SNR) computation A significantly expanded chapter on sample rate conversion (multirate systems) and associated filtering techniques New guidance on implementing fast convolution, IIR filter scaling, and more Enhanced coverage of analyzing digital filter behavior and performance for diverse communications and biomedical applications Discrete sequences/systems, periodic sampling, DFT, FFT, finite/infinite impulse response filters, quadrature (I/Q) processing, discrete Hilbert transforms, binary number formats, and much more




Digital Signal Processing in Power Electronics Control Circuits


Book Description

Many digital control circuits in current literature are described using analog transmittance. This may not always be acceptable, especially if the sampling frequency and power transistor switching frequencies are close to the band of interest. Therefore, a digital circuit is considered as a digital controller rather than an analog circuit. This helps to avoid errors and instability in high frequency components. Digital Signal Processing in Power Electronics Control Circuits covers problems concerning the design and realization of digital control algorithms for power electronics circuits using digital signal processing (DSP) methods. This book bridges the gap between power electronics and DSP. The following realizations of digital control circuits are considered: digital signal processors, microprocessors, microcontrollers, programmable digital circuits. Discussed in this book is signal processing, starting from analog signal acquisition, through its conversion to digital form, methods of its filtration and separation, and ending with pulse control of output power transistors. The book is focused on two applications for the considered methods of digital signal processing: an active power filter and a digital class D power amplifier. The major benefit to readers is the acquisition of specific knowledge concerning discussions on the processing of signals from voltage or current sensors using a digital signal processor and to the signals controlling the output inverter transistors. Included are some Matlab examples for illustration of the considered problems.




Real-time Digital Signal Processing


Book Description




Digital Filters and Signal Processing in Electronic Engineering


Book Description

From industrial and teaching experience the authors provide a blend of theory and practice of digital signal processing (DSP) for advanced undergraduate and post-graduate engineers reading electronics. This fast-moving, developing area is driven by the information technology revolution. It is a source book in research and development for embedded system design engineers, designers in real-time computing, and applied mathematicians who apph DSP techniques in telecommunications, aerospace (control systems), satellite communications, instrumentation, and medical technology (ultrasound and magnetic resonance imaging).The book is particularly useful at the hardware end of DSP, with its emphasis on practical I)SP devices and the integration of basic processes with appropriate software. It is unique to find in one volume the implementation of the equations as algorithms, not only in \IATLAB but right up to a working DSP-based scheme. Other relevant architectural features include number representations, multiply-accumulate, special addressing modes, zero overhead iteration schemes. and single and multiple nlicroprocessors which will allow the readers to compare and understand both current processors and future DSP developments.Fundamental signal processing procedures are introduced and developed: also convolution. correlation, the Discrete Fourier Transform and its fast computation algorithms. Then follo finite impulse response (FIR) filters, infinite impulse response (IlR) filters, multirate filters, adaptive filters, and topics from communication and control. I)esign examples are given in all of these cases, taken through an algorithm testing stage using MATLAB. The design of the latter. using C language models, is explained together with the experimental results of real time integer implementations.Academic prerequisites are first and second year university mathematics, an introductor knowledge of circuit theor 'and microprocessors. and C Language. - Provides an unusual blend of theory and practice of digital signal processing (DSP) - Discusses fundamental signal processing procedures, convolution, correlation, the Discrete Fourier Transform and its fast computation algorithms - Includes number representations, multiply-accumulate, special addressing modes, zero overhead iteration schemes, and single and multiple instructions




Digital Signal Processing 101


Book Description

Digital Signal Processing 101: Everything You Need to Know to Get Started provides a basic tutorial on digital signal processing (DSP). Beginning with discussions of numerical representation and complex numbers and exponentials, it goes on to explain difficult concepts such as sampling, aliasing, imaginary numbers, and frequency response. It does so using easy-to-understand examples with minimum mathematics. In addition, there is an overview of the DSP functions and implementation used in several DSP-intensive fields or applications, from error correction to CDMA mobile communication to airborne radar systems. This book has been updated to include the latest developments in Digital Signal Processing, and has eight new chapters on: - Automotive Radar Signal Processing - Space-Time Adaptive Processing Radar - Field Orientated Motor Control - Matrix Inversion algorithms - GPUs for computing - Machine Learning - Entropy and Predictive Coding - Video compression - Features eight new chapters on Automotive Radar Signal Processing, Space-Time Adaptive Processing Radar, Field Orientated Motor Control, Matrix Inversion algorithms, GPUs for computing, Machine Learning, Entropy and Predictive Coding, and Video compression - Provides clear examples and a non-mathematical approach to get you up to speed quickly - Includes an overview of the DSP functions and implementation used in typical DSP-intensive applications, including error correction, CDMA mobile communication, and radar systems