Predicting Structured Data


Book Description

State-of-the-art algorithms and theory in a novel domain of machine learning, prediction when the output has structure.




Prediction and Analysis for Knowledge Representation and Machine Learning


Book Description

A number of approaches are being defined for statistics and machine learning. These approaches are used for the identification of the process of the system and the models created from the system’s perceived data, assisting scientists in the generation or refinement of current models. Machine learning is being studied extensively in science, particularly in bioinformatics, economics, social sciences, ecology, and climate science, but learning from data individually needs to be researched more for complex scenarios. Advanced knowledge representation approaches that can capture structural and process properties are necessary to provide meaningful knowledge to machine learning algorithms. It has a significant impact on comprehending difficult scientific problems. Prediction and Analysis for Knowledge Representation and Machine Learning demonstrates various knowledge representation and machine learning methodologies and architectures that will be active in the research field. The approaches are reviewed with real-life examples from a wide range of research topics. An understanding of a number of techniques and algorithms that are implemented in knowledge representation in machine learning is available through the book’s website. Features: Examines the representational adequacy of needed knowledge representation Manipulates inferential adequacy for knowledge representation in order to produce new knowledge derived from the original information Improves inferential and acquisition efficiency by applying automatic methods to acquire new knowledge Covers the major challenges, concerns, and breakthroughs in knowledge representation and machine learning using the most up-to-date technology Describes the ideas of knowledge representation and related technologies, as well as their applications, in order to help humankind become better and smarter This book serves as a reference book for researchers and practitioners who are working in the field of information technology and computer science in knowledge representation and machine learning for both basic and advanced concepts. Nowadays, it has become essential to develop adaptive, robust, scalable, and reliable applications and also design solutions for day-to-day problems. The edited book will be helpful for industry people and will also help beginners as well as high-level users for learning the latest things, which include both basic and advanced concepts.




Learning from Structured Data


Book Description

A plethora of high-impact applications involve predictive modeling of structured data. In various domains, from hospital readmission prediction in the medical realm, though weather forecasting and event detection in power systems, up to conversion prediction in online businesses, the data holds a certain underlying structure. Building predictive models from such data calls for leveraging the structure as an additional source of information. Thus, a broad range of structure-aware approaches have been introduced, yet certain common challenges in many structured learning scenarios remain unresolved. This dissertation revolves around addressing the challenges of scalability, algorithmic stability and temporal awareness in several scenarios of learning from either graphically or sequentially structured data. Initially, the first two challenges are discussed from a structured regression standpoint. The studies addressing these challenges aim at designing scalable and algorithmically stable models for structured data, without compromising their prediction performance. It is further inspected whether such models can be applied to both static and dynamic (time-varying) graph data. To that end, a structured ensemble model is proposed to scale with the size of temporal graphs, while making stable and reliable yet accurate predictions on a real-world application involving gene expression prediction. In the case of static graphs, a theoretical insight is provided on the relationship between algorithmic stability and generalization in a structured regression setting. A stability-based objective function is designed to indirectly control the stability of a collaborative ensemble regressor, yielding generalization performance improvements on structured regression applications as diverse as predicting housing prices based on real-estate transactions and readmission prediction from hospital records. Modeling data that holds a sequential rather than a graphical structure requires addressing temporal awareness as one of the major challenges. In that regard, a model is proposed to generate time-aware representations of user activity sequences, intended to be seamlessly applicable across different user-related tasks, while sidestepping the burden of task-driven feature engineering. The quality and effectiveness of the time-aware user representations led to predictive performance improvements over state-of-the-art models on multiple large-scale conversion prediction tasks. Sequential data is also analyzed from the perspective of a high-impact application in the realm of power systems. Namely, detecting and further classifying disturbance events, as an important aspect of risk mitigation in power systems, is typically centered on the challenges of capturing structural characteristics in sequential synchrophasor recordings. Therefore, a thorough comparative analysis was conducted by assessing various traditional as well as more sophisticated event classification models under different domain-expert-assisted labeling scenarios. The experimental findings provide evidence that hierarchical convolutional neural networks (HCNNs), capable of automatically learning time-invariant feature transformations that preserve the structural characteristics of the synchrophasor signals, consistently outperform traditional model variants. Their performance is observed to further improve as more data are inspected by a domain expert, while smaller fractions of solely expert-inspected signals are already sufficient for HCNNs to achieve satisfactory event classification accuracy. Finally, insights into the impact of the domain expertise on the downstream classification performance are also discussed.




Predicting Structured Data


Book Description

Machine learning develops intelligent computer systems that are able to generalize from previously seen examples. A new domain of machine learning, in which the prediction must satisfy the additional constraints found in structured data, poses one of machine learning's greatest challenges: learning functional dependencies between arbitrary input and output domains. This volume presents and analyzes the state of the art in machine learning algorithms and theory in this novel field. The contributors discuss applications as diverse as machine translation, document markup, computational biology, and information extraction, among others, providing a timely overview of an exciting field. Contributors Yasemin Altun, Gökhan Bakir, Olivier Bousquet, Sumit Chopra, Corinna Cortes, Hal Daumé III, Ofer Dekel, Zoubin Ghahramani, Raia Hadsell, Thomas Hofmann, Fu Jie Huang, Yann LeCun, Tobias Mann, Daniel Marcu, David McAllester, Mehryar Mohri, William Stafford Noble, Fernando Pérez-Cruz, Massimiliano Pontil, Marc'Aurelio Ranzato, Juho Rousu, Craig Saunders, Bernhard Schölkopf, Matthias W. Seeger, Shai Shalev-Shwartz, John Shawe-Taylor, Yoram Singer, Alexander J. Smola, Sandor Szedmak, Ben Taskar, Ioannis Tsochantaridis, S.V.N Vishwanathan, Jason Weston.




Graph Representation Learning


Book Description

Graph-structured data is ubiquitous throughout the natural and social sciences, from telecommunication networks to quantum chemistry. Building relational inductive biases into deep learning architectures is crucial for creating systems that can learn, reason, and generalize from this kind of data. Recent years have seen a surge in research on graph representation learning, including techniques for deep graph embeddings, generalizations of convolutional neural networks to graph-structured data, and neural message-passing approaches inspired by belief propagation. These advances in graph representation learning have led to new state-of-the-art results in numerous domains, including chemical synthesis, 3D vision, recommender systems, question answering, and social network analysis. This book provides a synthesis and overview of graph representation learning. It begins with a discussion of the goals of graph representation learning as well as key methodological foundations in graph theory and network analysis. Following this, the book introduces and reviews methods for learning node embeddings, including random-walk-based methods and applications to knowledge graphs. It then provides a technical synthesis and introduction to the highly successful graph neural network (GNN) formalism, which has become a dominant and fast-growing paradigm for deep learning with graph data. The book concludes with a synthesis of recent advancements in deep generative models for graphs—a nascent but quickly growing subset of graph representation learning.




Machine Learning and Knowledge Discovery in Databases


Book Description

This two-volume set LNAI 7523 and LNAI 7524 constitutes the refereed proceedings of the European Conference on Machine Learning and Knowledge Discovery in Databases: ECML PKDD 2012, held in Bristol, UK, in September 2012. The 105 revised research papers presented together with 5 invited talks were carefully reviewed and selected from 443 submissions. The final sections of the proceedings are devoted to Demo and Nectar papers. The Demo track includes 10 papers (from 19 submissions) and the Nectar track includes 4 papers (from 14 submissions). The papers grouped in topical sections on association rules and frequent patterns; Bayesian learning and graphical models; classification; dimensionality reduction, feature selection and extraction; distance-based methods and kernels; ensemble methods; graph and tree mining; large-scale, distributed and parallel mining and learning; multi-relational mining and learning; multi-task learning; natural language processing; online learning and data streams; privacy and security; rankings and recommendations; reinforcement learning and planning; rule mining and subgroup discovery; semi-supervised and transductive learning; sensor data; sequence and string mining; social network mining; spatial and geographical data mining; statistical methods and evaluation; time series and temporal data mining; and transfer learning.




Big Data Analytical Algorithm Based on Scaling Graphical & Predictive Modal.


Book Description

Volatility in critical socio-economic indices can have a significant negative impact on global development. This thesis presents a suite of novel big data analytics algorithms that operate on unstructured Web data streams to automatically infer events, knowledge graphs and predictive models to understand, characterize and predict the volatility of socioeconomic indices.




Advanced Structured Prediction


Book Description




Interpretable Machine Learning


Book Description

This book is about making machine learning models and their decisions interpretable. After exploring the concepts of interpretability, you will learn about simple, interpretable models such as decision trees, decision rules and linear regression. Later chapters focus on general model-agnostic methods for interpreting black box models like feature importance and accumulated local effects and explaining individual predictions with Shapley values and LIME. All interpretation methods are explained in depth and discussed critically. How do they work under the hood? What are their strengths and weaknesses? How can their outputs be interpreted? This book will enable you to select and correctly apply the interpretation method that is most suitable for your machine learning project.