Polymer Coatings


Book Description

A practical guide to polymer coatings that covers all aspects from materials to applications Polymer Coatings is a practical resource that offers an overview of the fundamentals to the synthesis, characterization, deposition methods, and recent developments of polymer coatings. The text includes information about the different polymers and polymer networks in use, resins for solvent- and water-based coatings, and a variety of additives. It presents deposition methods that encompass frequently used mechanical and electrochemical approaches, in addition to the physical-chemical aspects of the coating process. The author covers the available characterization methods including spectroscopic, morphological, thermal and mechanical techniques. The comprehensive text also reviews developments in selected technology areas such as electrically conductive, anti-fouling, and self-replenishing coatings. The author includes insight into the present status of the research field, describes systems currently under investigation, and draws our attention to yet to be explored systems. This important text: • Offers a thorough overview of polymer coatings and their applications • Covers different classes of materials, deposition methods, coating processes, and ways of characterization • Contains a text that is designed to be accessible and helps to apply the acquired knowledge immediately • Includes information on selected areas of research with imminent application potential for functional coatings Written for chemists in industry, materials scientists, polymer chemists, and physical chemists, Polymer Coatings offers a text that contains the information needed to gain an understanding of the charaterization and applications of polymer coatings.










A Beginners' Guide to Scanning Electron Microscopy


Book Description

This book was developed with the goal of providing an easily understood text for those users of the scanning electron microscope (SEM) who have little or no background in the area. The SEM is routinely used to study the surface structure and chemistry of a wide range of biological and synthetic materials at the micrometer to nanometer scale. Ease-of-use, typically facile sample preparation, and straightforward image interpretation, combined with high resolution, high depth of field, and the ability to undertake microchemical and crystallographic analysis, has made scanning electron microscopy one of the most powerful and versatile techniques for characterization today. Indeed, the SEM is a vital tool for the characterization of nanostructured materials and the development of nanotechnology. However, its wide use by professionals with diverse technical backgrounds—including life science, materials science, engineering, forensics, mineralogy, etc., and in various sectors of government, industry, and academia—emphasizes the need for an introductory text providing the basics of effective SEM imaging.A Beginners’ Guide to Scanning Electron Microscopy explains instrumentation, operation, image interpretation and sample preparation in a wide ranging yet succinct and practical text, treating the essential theory of specimen-beam interaction and image formation in a manner that can be effortlessly comprehended by the novice SEM user. This book provides a concise and accessible introduction to the essentials of SEM includes a large number of illustrations specifically chosen to aid readers' understanding of key concepts highlights recent advances in instrumentation, imaging and sample preparation techniques offers examples drawn from a variety of applications that appeal to professionals from diverse backgrounds.




Polymer Coatings: Technologies and Applications


Book Description

Polymer Coatings: Technologies and Applications provides a comprehensive account of the recent developments in polymer coatings encompassing novel methods, techniques, and a broad spectrum of applications. The chapters explore the key aspects of polymer coatings while highlighting fundamental research, different types of polymer coatings, and technology advances. This book also integrates the various aspects of these materials from synthesis to application. Current status, trends, future directions, and opportunities are also discussed. FEATURES Examines the basics to the most recent advances in all areas of polymer coatings Serves as a one-stop reference Discusses polymer-coated nanocrystals and coatings based on nanocomposites Describes morphology, spectroscopic analysis, adhesion, and rheology of polymer coatings Explores conducting, stimuli-responsive, self-healing, hydrophobic and hydrophilic, antifouling, and antibacterial polymer coatings Covers modeling and simulation With contributions from the top international researchers from industry, academia, government, and private research institutions, both new and experienced readers will benefit from this applications-oriented book. Sanjay Mavinkere Rangappa is a research scientist at the Natural Composites Research Group Lab, Academic Enhancement Department, King Mongkut’s University of Technology North Bangkok, Thailand. Jyotishkumar Parameswaranpillai is a research professor at the Center of Innovation in Design and Engineering for Manufacturing, King Mongkut’s University of Technology North Bangkok, Thailand. Suchart Siengchin is a professor at and president of King Mongkut’s University of Technology North Bangkok, Thailand.




Polymer-Based Nanoscale Materials for Surface Coatings


Book Description

Polymer-Based Nanoscale Materials for Surface Coatings presents the latest advances and emerging technologies in polymer-based nanomaterials for coatings, focusing on novel materials, characterization techniques, and cutting-edge applications. Sections present the fundamentals of surface preparation and nanocoatings, linking materials and properties, explaining the correlation between morphology, surface phenomena, and surface protection mechanism, and covering theory, modeling and simulation. Other presented topics cover characterization methods, with an emphasis on the latest developments in techniques and approaches. Aging and lifecycle assessment of coated surfaces and coatings are also discussed.Final sections explore advanced applications across a range of fields, including intelligent coatings for biomedical implants, self-healing coatings, syper-hydrophobicity, electroluminescence, sustainable edible coatings, marine antifouling, corrosion resistance, and photocatalytic coatings. - Explains the fundamentals of coatings and surface protection, mechanisms, materials and properties, and modeling and simulation - Presents detailed information on the latest characterization techniques to prepare nanoscale polymer coatings with enhanced properties - Explores a broad range of state-of-the-art applications and considers aging and lifecycle assessments of coatings




Catalyst Characterization


Book Description

to the Fundamental and Applied Catalysis Series Catalysis is important academically and industrially. It plays an essential role in the manufacture of a wide range of products, from gasoline and plastics to fertilizers and herbicides, which would otherwise be unobtainable or prohibitive ly expensive. There are few chemical-or oil-based material items in modern society that do not depend in some way on a catalytic stage in their manufacture. Apart from manufacturing processes, catalysis is finding other important and over-increasing uses; for example, successful applications of catalysis in the control ofpollution and its use in environmental control are certain to in crease in the future. The commercial import an ce of catalysis and the diverse intellectual challenges of catalytic phenomena have stimulated study by a broad spectrum of scientists including chemists, physicists, chemical engineers, and material scientists. Increasing research activity over the years has brought deeper levels of understanding, and these have been associated with a continually growing amount of published material. As recentlyas sixty years ago, Rideal and Taylor could still treat the subject comprehensively in a single volume, but by the 19 50s Emmett required six volumes, and no conventional multivolume text could now cover the whole of catalysis in any depth.