Scanning Probe Microscopy for Energy Research


Book Description

Efficiency and life time of solar cells, energy and power density of the batteries, and costs of the fuel cells alike cannot be improved unless the complex electronic, optoelectronic, and ionic mechanisms underpinning operation of these materials and devices are understood on the nanometer level of individual defects. Only by probing these phenomena locally can we hope to link materials structure and functionality, thus opening pathway for predictive modeling and synthesis. While structures of these materials are now accessible on length scales from macroscopic to atomic, their functionality has remained Terra Incognitae. In this volume, we provide a summary of recent advances in scanning probe microscopy studies of local functionality of energy materials and devices ranging from photovoltaics to batteries, fuel cells, and energy harvesting systems. Recently emergent SPM modes and combined SPM-electron microscopy approaches are also discussed. Contributions by internationally renowned leaders in the field describe the frontiers in this important field.




Scanning Probe Microscopy For Energy Research: Materials, Devices, And Applications


Book Description

Efficiency and life time of solar cells, energy and power density of the batteries, and costs of the fuel cells alike cannot be improved unless the complex electronic, optoelectronic, and ionic mechanisms underpinning operation of these materials and devices are understood on the nanometer level of individual defects. Only by probing these phenomena locally can we hope to link materials structure and functionality, thus opening pathway for predictive modeling and synthesis. While structures of these materials are now accessible on length scales from macroscopic to atomic, their functionality has remained Terra Incognitae. In this volume, we provide a summary of recent advances in scanning probe microscopy studies of local functionality of energy materials and devices ranging from photovoltaics to batteries, fuel cells, and energy harvesting systems. Recently emergent SPM modes and combined SPM-electron microscopy approaches are also discussed. Contributions by internationally renowned leaders in the field describe the frontiers in this important field.




Atomic Force Microscopy for Energy Research


Book Description

Atomic force microscopy (AFM) can be used to analyze and measure the physical properties of all kinds of materials at nanoscale in the atmosphere, liquid phase, and ultra-high vacuum environment. It has become an important tool for nanoscience research. In this book, the basic principles of functional AFM techniques and their applications in energy materials—such as lithium-ion batteries, solar cells, and other energy-related materials—are addressed. FEATURES First book to focus on application of AFM for energy research Details the use of advanced AFM and addresses many types of functional AFM tools Enables readers to operate an AFM instrument successfully and to understand the data obtained Covers new achievements in AFM instruments, including electrochemical strain microscopy, and how AFM is being combined with other new methods such as infrared (IR) spectroscopy With its substantial content and logical structure, Atomic Force Microscopy for Energy Research is a valuable reference for researchers in materials science, chemistry, and physics who are working with AFM or planning to use it in their own fields of research, especially energy research.




Impact of Electron and Scanning Probe Microscopy on Materials Research


Book Description

The Advanced Study Institute provided an opportunity for researchers in universities, industry and National and International Laboratories, from the disciplines ofmaterials science, physics, chemistry and engineering to meet together in an assessment of the impact of electron and scanning probe microscopy on advanced material research. Since these researchers have traditionally relied upon different approaches, due to their different scientific background, to advanced materials problem solving, presentations and discussion within the Institute sessions were initially devoted to developing a set ofmutually understood basic concepts, inherently related to different techniques ofcharacterization by microscopy and spectroscopy. Particular importance was placed on Electron Energy Loss Spectroscopy (EELS), Scanning Probe Microscopy (SPM), High Resolution Transmission and Scanning Electron Microscopy (HRTEM, HRSTEM) and Environmental Scanning Electron Microscopy (ESEM). It was recognized that the electronic structure derived directly from EELS analysis as well as from atomic positions in HRTEM or High Angle Annular Dark Field STEM can be used to understand the macroscopic behaviour of materials. The emphasis, however, was upon the analysis of the electronic band structure of grain boundaries, fundamental for the understanding of macroscopic quantities such as strength, cohesion, plasticity, etc.




Scanning Probe Microscopy in Nanoscience and Nanotechnology 2


Book Description

This book presents the physical and technical foundation of the state of the art in applied scanning probe techniques. It constitutes a timely and comprehensive overview of SPM applications. The chapters in this volume relate to scanning probe microscopy techniques, characterization of various materials and structures and typical industrial applications, including topographic and dynamical surface studies of thin-film semiconductors, polymers, paper, ceramics, and magnetic and biological materials. The chapters are written by leading researchers and application scientists from all over the world and from various industries to provide a broader perspective.




Scanning Probe Microscopy in Nanoscience and Nanotechnology 3


Book Description

This book presents the physical and technical foundation of the state of the art in applied scanning probe techniques. It constitutes a timely and comprehensive overview of SPM applications. The chapters in this volume relate to scanning probe microscopy techniques, characterization of various materials and structures and typical industrial applications, including topographic and dynamical surface studies of thin-film semiconductors, polymers, paper, ceramics, and magnetic and biological materials. The chapters are written by leading researchers and application scientists from all over the world and from various industries to provide a broader perspective.




Scanning Probe Microscopy


Book Description

Written by three leading experts in the field, this textbook describes and explains all aspects of the scanning probe microscopy. Emphasis is placed on the experimental design and procedures required to optimize the performance of the various methods. Scanning Probe Microscopy covers not only the physical principles behind scanning probe microscopy but also questions of instrumental designs, basic features of the different imaging modes, and recurring artifacts. The intention is to provide a general textbook for all types of classes that address scanning probe microscopy. Third year undergraduates and beyond should be able to use it for self-study or as textbook to accompany a course on probe microscopy. Furthermore, it will be valuable as reference book in any scanning probe microscopy laboratory. Novel applications and the latest important results are also presented, and the book closes with a look at the future prospects of scanning probe microscopy, also discussing related techniques in nanoscience. Ideally suited as an introduction for graduate students, the book will also serve as a valuable reference for practising researchers developing and using scanning probe techniques.




Scanning Probe Microscopy


Book Description

Scanning Probe Microscopy (SPM) is the enabling tool for nano(bio)technology, which has opened new vistas in many interdisciplinary research areas. Concomitant with the developments in SPM instrumentation and techniques are new and previously unthought-of opportunities in materials nanofabrication and characterisation. In particular, the developments in addressing and manipulating matter at the level of single atoms or molecules, and studies of biological materials (e.g. live cells, or cell membranes) result in new and exciting discoveries. The rising importance of SPM demands a concise treatment in the form of a book which is accessible to interdisciplinary practitioners. This book highlights recent advances in the field of SPM with sufficient depth and breadth to provide an intellectually stimulating overview of the current state of the art. The book is based on a set of carefully selected original works from renowned contributors on topics that range from atom technology, scanning tunneling spectroscopy of self-assembled nanostructures, SPM probe fabrication, scanning force microscopy applications in biology and materials science down to the single molecule level, novel scanning probe techniques, and nanolithography. The variety of topics underlines the strong interdisciplinary character of SPM related research and the combined expertise of the contributors gives us a unique opportunity to discuss possible future trends in SPM related research. This makes the book not merely a collection of already published material but an enlightening insight into cutting edge research and global SPM research trends.




Scanning Probe Microscopy¿in Industrial Applications


Book Description

Describes new state-of-the-science tools and their contribution to industrial R&D With contributions from leading international experts in the field, this book explains how scanning probe microscopy is used in industry, resulting in improved product formulation, enhanced processes, better quality control and assurance, and new business opportunities. Readers will learn about the use of scanning probe microscopy to support R&D efforts in the semiconductor, chemical, personal care product, biomaterial, pharmaceutical, and food science industries, among others. Scanning Probe Microscopy in Industrial Applications emphasizes nanomechanical characterization using scanning probe microscopy. The first half of the book is dedicated to a general overview of nanomechanical characterization methods, offering a complete practical tutorial for readers who are new to the topic. Several chapters include worked examples of useful calculations such as using Hertz mechanics with and without adhesion to model a contact, step-by-step instructions for simulations to guide cantilever selection for an experiment, and data analysis procedures for dynamic contact experiments. The second half of the book describes applications of nanomechanical characterization in industry, including: New formulation development for pharmaceuticals Measurement of critical dimensions and thin dielectric films in the semiconductor industry Effect of humidity and temperature on biomaterials Characterization of polymer blends to guide product formulation in the chemicals sector Unraveling links between food structure and function in the food industry Contributions are based on the authors' thorough review of the current literature as well as their own firsthand experience applying scanning probe microscopy to solve industrial R&D problems. By explaining the fundamentals before advancing to applications, Scanning Probe Microscopy in Industrial Applications offers a complete treatise that is accessible to both novices and professionals. All readers will discover how to apply scanning probe microscopy to build and enhance their R&D efforts.




Scanning Probe Microscopy


Book Description

Scanning Probe Microscopy provides a comprehensive source of information for researchers, teachers, and graduate students about the rapidly expanding field of scanning probe theory. Written in the style of a textbook, it explains from scratch the theory behind today’s simulation techniques and gives examples of theoretical concepts through state-of-the-art simulations, including the means to compare these results with experimental data. The book provides the first comprehensive framework for electron transport theory with its various degrees of approximations used in today’s research, thus allowing extensive insight into the physics of scanning probes. Experimentalists will appreciate how the instrument's operation is changed by materials properties; theorists will understand how simulations can be directly compared to experimental data.