Scanning Probe Microscopy in Nanoscience and Nanotechnology 2


Book Description

This book presents the physical and technical foundation of the state of the art in applied scanning probe techniques. It constitutes a timely and comprehensive overview of SPM applications. The chapters in this volume relate to scanning probe microscopy techniques, characterization of various materials and structures and typical industrial applications, including topographic and dynamical surface studies of thin-film semiconductors, polymers, paper, ceramics, and magnetic and biological materials. The chapters are written by leading researchers and application scientists from all over the world and from various industries to provide a broader perspective.




Scanning Probe Microscopy in Nanoscience and Nanotechnology


Book Description

This book presents the physical and technical foundation of the state-of-the-art in applied scanning probe techniques. It constitutes a comprehensive overview of SPM applications. The chapters are written by leading researchers and application scientists.




Scanning Probe Microscopy in Nanoscience and Nanotechnology 3


Book Description

This book presents the physical and technical foundation of the state of the art in applied scanning probe techniques. It constitutes a timely and comprehensive overview of SPM applications. The chapters in this volume relate to scanning probe microscopy techniques, characterization of various materials and structures and typical industrial applications, including topographic and dynamical surface studies of thin-film semiconductors, polymers, paper, ceramics, and magnetic and biological materials. The chapters are written by leading researchers and application scientists from all over the world and from various industries to provide a broader perspective.




Roadmap of Scanning Probe Microscopy


Book Description

Scanning tunneling microscopy has achieved remarkable progress and become the key technology for surface science. This book predicts the future development for all of scanning probe microscopy (SPM). Such forecasts may help to determine the course ultimately taken and may accelerate research and development on nanotechnology and nanoscience, as well as all in SPM-related fields in the future.




Scanning Probe Microscopy


Book Description

This book explains the operating principles of atomic force microscopy and scanning tunneling microscopy. The aim of this book is to enable the reader to operate a scanning probe microscope successfully and understand the data obtained with the microscope. The chapters on the scanning probe techniques are complemented by the chapters on fundamentals and important technical aspects. This textbook is primarily aimed at graduate students from physics, materials science, chemistry, nanoscience and engineering, as well as researchers new to the field.




Scanning Probe Microscopy for Energy Research


Book Description

Efficiency and life time of solar cells, energy and power density of the batteries, and costs of the fuel cells alike cannot be improved unless the complex electronic, optoelectronic, and ionic mechanisms underpinning operation of these materials and devices are understood on the nanometer level of individual defects. Only by probing these phenomena locally can we hope to link materials structure and functionality, thus opening pathway for predictive modeling and synthesis. While structures of these materials are now accessible on length scales from macroscopic to atomic, their functionality has remained Terra Incognitae. In this volume, we provide a summary of recent advances in scanning probe microscopy studies of local functionality of energy materials and devices ranging from photovoltaics to batteries, fuel cells, and energy harvesting systems. Recently emergent SPM modes and combined SPM-electron microscopy approaches are also discussed. Contributions by internationally renowned leaders in the field describe the frontiers in this important field.




Scanning Probe Microscopy


Book Description

This volume will be devoted to the technical aspects of electrical and electromechanical SPM probes and SPM imaging on the limits of resolution, thus providing technical introduction into the field. This volume will also address the fundamental physical phenomena underpinning the imaging mechanism of SPMs.




Applied Scanning Probe Methods II


Book Description

The Nobel Prize of 1986 on Sc- ningTunnelingMicroscopysignaled a new era in imaging. The sc- ning probes emerged as a new - strument for imaging with a p- cision suf?cient to delineate single atoms. At ?rst there were two – the Scanning Tunneling Microscope, or STM, and the Atomic Force Mic- scope, or AFM. The STM relies on electrons tunneling between tip and sample whereas the AFM depends on the force acting on the tip when it was placed near the sample. These were quickly followed by the M- netic Force Microscope, MFM, and the Electrostatic Force Microscope, EFM. The MFM will image a single magnetic bit with features as small as 10nm. With the EFM one can monitor the charge of a single electron. Prof. Paul Hansma at Santa Barbara opened the door even wider when he was able to image biological objects in aqueous environments. At this point the sluice gates were opened and a multitude of different instruments appeared. There are signi?cant differences between the Scanning Probe Microscopes or SPM, and others such as the Scanning Electron Microscope or SEM. The probe microscopes do not require preparation of the sample and they operate in ambient atmosphere, whereas, the SEM must operate in a vacuum environment and the sample must be cross-sectioned to expose the proper surface. However, the SEM can record 3D image and movies, features that are not available with the scanning probes.




Scanning Probe Microscopy of Functional Materials


Book Description

The goal of this book is to provide a general overview of the rapidly developing field of novel scanning probe microscopy (SPM) techniques for characterization of a wide range of functional materials, including complex oxides, biopolymers, and semiconductors. Many recent advances in condensed matter physics and materials science, including transport mechanisms in carbon nanostructures and the role of disorder on high temperature superconductivity, would have been impossible without SPM. The unique aspect of SPM is its potential for imaging functional properties of materials as opposed to structural characterization by electron microscopy. Examples include electrical transport and magnetic, optical, and electromechanical properties. By bringing together critical reviews by leading researchers on the application of SPM to to the nanoscale characterization of functional materials properties, this book provides insight into fundamental and technological advances and future trends in key areas of nanoscience and nanotechnology.




Applied Scanning Probe Methods VIII


Book Description

The volumes VIII, IX and X examine the physical and technical foundation for recent progress in applied scanning probe techniques. This is the first book to summarize the state-of-the-art of this technique. The field is progressing so fast that there is a need for a set of volumes every 12 to 18 months to capture latest developments. These volumes constitute a timely comprehensive overview of SPM applications.