Scanning Probe Microscopy and Spectroscopy


Book Description

The investigation and manipulation of matter on the atomic scale have been revolutionised by scanning tunnelling microscopy and related scanning probe techniques. This book is the first to provide a clear and comprehensive introduction to this subject. Beginning with the theoretical background of scanning tunnelling microscopy, the design and instrumentation of practical STM and associated systems are described in detail, as are the applications of these techniques in fields such as condensed matter physics, chemistry, biology, and nanotechnology. Containing 350 illustrations, and over 1200 references, this unique book represents an ideal introduction to the subject for final-year undergraduates in physics or materials science. It will also be invaluable to graduate students and researchers in any branch of science where scanning probe techniques are used.




Scanning Tunneling Microscopy III


Book Description

Scanning Tunneling Microscopy III provides a unique introduction to the theoretical foundations of scanning tunneling microscopy and related scanning probe methods. The different theoretical concepts developed in the past are outlined, and the implications of the theoretical results for the interpretation of experimental data are discussed in detail. Therefore, this book serves as a most useful guide for experimentalists as well as for theoreticians working in the field of local probe methods. In this second edition the text has been updated and new methods are discussed.




Principles of Electron Tunneling Spectroscopy


Book Description

Electron tunnelling spectroscopy as a research tool has strongly advanced understanding of superconductivity. This book explains the physics and instrumentation behind the advances illustrated in beautiful images of atoms, rings of atoms and exotic states in high temperature superconductors, and summarizes the state of knowledge that has resulted.




Scanning Tunneling Microscopy and Its Application


Book Description

This book presents a unified view of the rapidly growing field of scanning tunneling microscopy and its many derivatives. After examining novel scanning-probe techniques and the instrumentation and methods, the book provides detailed accounts of STM applications. It examines limitations of the present-day investigations and provides insight into further trends. "I strongly recommend that Professor Bai's book be a part of any library that serves surface scientists, biochemists, biophysicists, material scientists, and students of any science or engineering field...There is no doubt that this is one of the better (most thoughtful) texts." Journal of the American Chemical Society (Review of 1/e)




Tunneling Spectroscopy


Book Description

This book has been compiled to give specialists, in areas that could be helped by tunneling spectroscopy, a rounded and relatively painless intro duction to the field. Why relatively painless? Because this book is filled with figures-A quick glance through these figures can give one a good idea of the types of systems that can be studied and the quality of results that can be obtained. To date, it has been somewhat difficult to learn about tunneling spectroscopy, as papers in this field have appeared in a diversity of scientific journals: for example. The Journal of Adhesion, J(}urnal (}f Catalysis, Surface and Interface Analysis, Science, Journal of the American Chemical Society, Physical Review-over 45 different ones in all, plus numerous conference proceedings. This diversity is, however, undoubtedly healthy. It indicates that the findings of tunneling spectroscopy are of interest and potential benefit to a wide audience. This book can help people who have seen a few papers or heard a talk on tunneling spectroscopy and want to learn more about what it can do for their field. Tunneling spectroscopy is presently in a transitional state. Its experi mental methods and theoretical basis have been reasonably well developed. Its continued vitality will depend on the success of its applications. Crucial to that success, as pointed out by Ward Plummer, is the adoption of tunneling spectroscopy by specialists in the areas of application.




Scanning Tunneling Microscopy


Book Description

Scanning tunneling microscopy (STM) and its extensions have become revolutionary tools in the fields of physics, materials science, chemistry, and biology. These new microscopies have evolved from their beginnings asresearch aids to their current use as commercial tools in the laboratory and on the factory floor. New wonders continue to unfold as STM delivers atomic scale imaging and electrical characterization of the newly emerging nanometer world. This volume in the METHODS OF EXPERIMENTAL PHYSICS Series describes the basics of scanning tunneling microscopy, provides a fundamental theoretical understanding of the technique and a thorough description of the instrumentation, and examines numerous examples and applications. Written by the pioneers of the field, this volume is an essential handbook for researchers and users of STM, as well as a valuable resource for libraries.




Atomic Force Microscopy/Scanning Tunneling Microscopy


Book Description

The first U. S. Army Natick Research, Development and Engineering Center Atomic Force/Scanning Tunneling Microscopy (AFM/STM) Symposium was held on lune 8-10, 1993 in Natick, Massachusetts. This book represents the compilation of the papers presented at the meeting. The purpose ofthis symposium was to provide a forum where scientists from a number of diverse fields could interact with one another and exchange ideas. The various topics inc1uded application of AFM/STM in material sciences, polymers, physics, biology and biotechnology, along with recent developments inc1uding new probe microscopies and frontiers in this exciting area. The meeting's format was designed to encourage communication between members of the general scientific community and those individuals who are at the cutting edge of AFM, STM and other probe microscopies. It immediately became clear that this conference enabled interdisciplinary interactions among researchers from academia, industry and government, and set the tone for future collaborations. Expert scientists from diverse scientific areas including physics, chemistry, biology, materials science and electronics were invited to participate in the symposium. The agenda of the meeting was divided into three major sessions. In the first session, Biological Nanostructure, topics ranged from AFM ofDNA to STM imagmg ofthe biomoleeule tubulin and bacterialluciferase to the AFM of starch polymer double helices to AFM imaging of food surfaces.




Scanning Tunneling Microscopy and Spectroscopy


Book Description

Scanning tunneling microscopy (STM) provides three-dimensional real- space images of surfaces at high spatial resolution. When the surface is flat and clean, even atoms can be imaged. Its extreme usefulness has led it to near instantaneous acceptance as a characterization tool. This book covers fundamental concepts of STM operation, image interpretation, instrumentation, and techniques for various applications. It als contains advanced treatments of theory and spectroscopy. Surface physicists, electrochemists, materials scientists, and other scientists who see a use for STM will find the depth of coverage and accompanying reference lists in this book essential to their work. In addition, those who wish to add the capabilities of probe microscopy to their operations, such as microscopists and quality control engineers, will find the basic information in this book.




Scanning Probe Microscopy and Spectroscopy


Book Description

A practical introduction to basic theory and contemporary applications across a wide range of research disciplines Over the past two decades, scanning probe microscopies and spectroscopies have gained acceptance as indispensable characterization tools for an array of disciplines. This book provides novices and experienced researchers with a highly accessible treatment of basic theory, alongside detailed examples of current applications of both scanning tunneling and force microscopies and spectroscopies. Like its popular predecessor, Scanning Probe Microscopy and Spectroscopy, Second Edition features contributions from distinguished scientists working in a wide range of specialties at university, commercial, and government research labs around the world. Chapters have been edited for clarity, conciseness, and uniformity of presentation to provide professionals with a concise working reference to scanning probe microscopic and spectroscopic principles, techniques, and practices. This Second Edition has been substantially revised and expanded to reflect important advances and new applications. In addition to numerous examples, the Second Edition features expanded coverage of electrostatic and magnetic force microscopies, near-field optical microscopies, and new applications of buried interfaces in nanomechanics, electrochemistry, and biology. Scanning Probe Microscopy and Spectroscopy, Second Edition is an indispensable working resource for surface scientists, microscopists, and spectroscopists in materials science, chemistry, engineering, biochemistry, physics, and the life sciences. It is also an unparalleled reference text for advanced undergraduates and graduate students in those fields.




Scanning Tunneling Microscopy II


Book Description

Scanning Tunneling Microscopy II, like its predecessor, presents detailed and comprehensive accounts of the basic principles and the broad range of applications of STM and related scanning probe techniques. The applications discussed in this volume come predominantly from the fields of electrochemistry and biology. In contrast to those in STM I, these studies may be performed in air and in liquids. The extensions of the basic technique to map other interactions are described in chapters on scanning force microscopy, magnetic force microscopy, and scanning near-field optical microscopy, together with a survey of other related techniques. Also discussed here is the use of a scanning proximal probe for surface modification. Together, the two volumes give a comprehensive account of experimental aspects of STM and provide essential reading and reference material. In this second edition the text has been updated and new methods are discussed.