Active Vision for Scene Understanding


Book Description

Visual perception is one of the most important sources of information for both humans and robots. A particular challenge is the acquisition and interpretation of complex unstructured scenes. This work contributes to active vision for humanoid robots. A semantic model of the scene is created, which is extended by successively changing the robot's view in order to explore interaction possibilities of the scene.







A Few Steps Towards 3D Active Vision


Book Description

T. Viéville: A Few Steps Towards 3D Active Vision appears as Vol. 33 in the Springer Series in Information Sciences. A specific problem in the field of active vision is analyzed, namely how suitable is it to explicitly use 3D visual cues in a reactive visual task? The author has collected a set of studies on this subject and has used these experimental and theoretical developments to propose a synthetic view on the problem, completed by some specific experiments. With this book scientists and graduate students will have a complete set of methods, algorithms, and experiments to introduce 3D visual cues in active visual perception mechanisms, e.g. autocalibration of visual sensors on robotic heads and mobile robots. Analogies with biological visual systems provide an easy introduction to this subject.




Active Vision


Book Description

This title focuses on vision as an active process, rather than a passive activity and provides an integrated account of seeing and looking. The authors give a thorough description of basic details of the visual and oculomotor systems necessary to understand active vision.




Recent Developments in Computer Vision


Book Description

With one new volume each year, this series keeps scientists and advanced students informed of the latest developments and results in all areas of botany. The present volume includes reviews on structural botany, plant taxonomy, physiology, genetics and geobotany.




Multimodal Scene Understanding


Book Description

Multimodal Scene Understanding: Algorithms, Applications and Deep Learning presents recent advances in multi-modal computing, with a focus on computer vision and photogrammetry. It provides the latest algorithms and applications that involve combining multiple sources of information and describes the role and approaches of multi-sensory data and multi-modal deep learning. The book is ideal for researchers from the fields of computer vision, remote sensing, robotics, and photogrammetry, thus helping foster interdisciplinary interaction and collaboration between these realms. Researchers collecting and analyzing multi-sensory data collections – for example, KITTI benchmark (stereo+laser) - from different platforms, such as autonomous vehicles, surveillance cameras, UAVs, planes and satellites will find this book to be very useful. - Contains state-of-the-art developments on multi-modal computing - Shines a focus on algorithms and applications - Presents novel deep learning topics on multi-sensor fusion and multi-modal deep learning




Imaging and Vision Systems


Book Description

Imaging & Vision Systems - Theory, Assessment & Applications, Advances in Computation, Theory & Practice -- Volume 9




Active Vision


Book Description

Active Vision explores important themes emerging from the active vision paradigm, which has only recently become an established area of machine vision. In four parts the contributions look in turn at tracking, control of vision heads, geometric and task planning, and architectures and applications, presenting research that marks a turning point for both the tasks and the processes of computer vision. The eighteen chapters in Active Vision draw on traditional work in computer vision over the last two decades, particularly in the use of concepts of geometrical modeling and optical flow; however, they also concentrate on relatively new areas such as control theory, recursive statistical filtering, and dynamical modeling. Active Vision documents a change in emphasis, one that is based on the premise that an observer (human or computer) may be able to understand a visual environment more effectively and efficiently if the sensor interacts with that environment, moving through and around it, culling information selectively, and analyzing visual sensory data purposefully in order to answer specific queries posed by the observer. This method is in marked contrast to the more conventional, passive approach to computer vision where the camera is supposed to take in the whole scene, attempting to make sense of all that it sees. Andrew Blake is Lecturer in Engineering Science at the University of Oxford Alan Yuille is Associate Professor in the Division of Applied Sciences at Harvard University.




Intelligent active vision systems for robots


Book Description

In this paper, an active vision system is developed which is based on image strategy. The image based control structure uses the optical flow algorithm for motion detection of an object in a visual scene. Because the optical flow is very sensitive to changes in illumination or to the quality of the video, it was necessary to use median filtering and erosion and dilatation morphological operations for the decrease of erroneous blobs residing in individual frames. Since the image coordinates of the object are subjected to noise, the Kalman filtering technique is adopted for robust estimation. A fuzzy controller based on the fuzzy condensed algorithm allows real time work for each captured frame. Finally, the proposed active vision system has been simulated in the development/simulation environment Matlab/Simulink.




Progress in Pattern Recognition, Image Analysis and Applications


Book Description

First of all, we want to congratulate two new research communities from M- ico and Brazil that have recently joined the Iberoamerican community and the International Association for Pattern Recognition. We believe that the series of congresses that started as the “Taller Iberoamericano de Reconocimiento de Patrones (TIARP)”, and later became the “Iberoamerican Congress on Pattern Recognition (CIARP)”, has contributed to these groupconsolidatione?orts. We hope that in the near future all the Iberoamerican countries will have their own groups and associations to promote our areas of interest; and that these congresses will serve as the forum for scienti?c research exchange, sharing of - pertise and new knowledge, and establishing contacts that improve cooperation between research groups in pattern recognition and related areas. CIARP 2004 (9th Iberoamerican Congress on Pattern Recognition) was the ninthinaseriesofpioneeringcongressesonpatternrecognitionintheIberoam- ican community. As in the previous year, CIARP 2004 also included worldwide participation. It took place in Puebla, Mexico. The aim of the congress was to promote and disseminate ongoing research and mathematical methods for pattern recognition, image analysis, and applications in such diverse areas as computer vision, robotics, industry, health, entertainment, space exploration, telecommunications, data mining, document analysis,and natural languagep- cessing and recognition, to name a few.