Scheduling Theory and Its Applications


Book Description

Covering deterministic scheduling, stochastic scheduling, and the probabilistic analysis of algorithms, this unusually broad view of the subject brings together tutorials, surveys and articles with original results from foremost international experts. The contributions reflect the great diversity in scheduling theory in terms of academic disciplines, applications areas, fundamental approaches and mathematical skills. This book will help researchers to be aware of the progress in the various areas of specialization and the possible influences that this progress may have on their own specialities. Few disciplines are driven so much by continually changing and expanding technology, a fact that gives scheduling a permanence while adding to the excitement of designing and analyzing new systems. The book will be a vital resource for researchers and graduate students of computer science, applied mathematics and operational research who wish to remain up-to-date on the scheduling models and problems of many of the newest technologies in industry, commerce, and the computer and communications sciences.




Scheduling Theory. Single-Stage Systems


Book Description

Scheduling theory is an important branch of operations research. Problems studied within the framework of that theory have numerous applications in various fields of human activity. As an independent discipline scheduling theory appeared in the middle of the fifties, and has attracted the attention of researchers in many countries. In the Soviet Union, research in this direction has been mainly related to production scheduling, especially to the development of automated systems for production control. In 1975 Nauka ("Science") Publishers, Moscow, issued two books providing systematic descriptions of scheduling theory. The first one was the Russian translation of the classical book Theory of Scheduling by American mathematicians R. W. Conway, W. L. Maxwell and L. W. Miller. The other one was the book Introduction to Scheduling Theory by Soviet mathematicians V. S. Tanaev and V. V. Shkurba. These books well complement each other. Both. books well represent major results known by that time, contain an exhaustive bibliography on the subject. Thus, the books, as well as the Russian translation of Computer and Job-Shop Scheduling Theory edited by E. G. Coffman, Jr., (Nauka, 1984) have contributed to the development of scheduling theory in the Soviet Union. Many different models, the large number of new results make it difficult for the researchers who work in related fields to follow the fast development of scheduling theory and to master new methods and approaches quickly.




Multidisciplinary Scheduling: Theory and Applications


Book Description

Multidisciplinary Scheduling: Theory and Applications is a volume of nineteen reviewed papers that were selected from the sixty-seven papers presented during the First Multidisciplinary International Conference of Scheduling (MISTA). This is the initial volume of MISTA—the primary forum on interdisciplinary research on scheduling research. Each paper in the volume has been rigorously reviewed and carefully copyedited to ensure its readability. The MISTA volume focuses on the following leading edge topics: Fundamentals of Scheduling, Multi-Criteria Scheduling, Personnel Scheduling, Scheduling in Space, Scheduling the Internet, Machine Scheduling, Bin Packing, Educational Timetabling, Sports Scheduling, and Transport Scheduling.




Scheduling


Book Description

This new edition of the well established text Scheduling - Theory, Algorithms, and Systems provides an up-to-date coverage of important theoretical models in the scheduling literature as well as significant scheduling problems that occur in the real world. It again includes supplementary material in the form of slide-shows from industry and movies that show implementations of scheduling systems. The main structure of the book as per previous edition consists of three parts. The first part focuses on deterministic scheduling and the related combinatorial problems. The second part covers probabilistic scheduling models; in this part it is assumed that processing times and other problem data are random and not known in advance. The third part deals with scheduling in practice; it covers heuristics that are popular with practitioners and discusses system design and implementation issues. All three parts of this new edition have been revamped and streamlined. The references have been made completely up-to-date. Theoreticians and practitioners alike will find this book of interest. Graduate students in operations management, operations research, industrial engineering, and computer science will find the book an accessible and invaluable resource. Scheduling - Theory, Algorithms, and Systems will serve as an essential reference for professionals working on scheduling problems in manufacturing, services, and other environments. Reviews of third edition: This well-established text covers both the theory and practice of scheduling. The book begins with motivating examples and the penultimate chapter discusses some commercial scheduling systems and examples of their implementations." (Mathematical Reviews, 2009)




Mathematical Aspects of Scheduling and Applications


Book Description

Mathematical Aspects of Scheduling and Applications addresses the perennial problem of optimal utilization of finite resources in the accomplishment of an assortment of tasks or objectives. The book provides ways to uncover the core of these problems, presents them in mathematical terms, and devises mathematical solutions for them. The book consists of 12 chapters. Chapter 1 deals with network problems, the shortest path problem, and applications to control theory. Chapter 2 stresses the role and use of computers based on the decision-making problems outlined in the preceding chapter. Chapter 3 classifies scheduling problems and their solution approaches. Chapters 4 to 6 discuss machine sequencing problems and techniques. Chapter 5 tackles capacity expansion problems and introduces the technique of embedded state space dynamic programming for reducing dimensionality so that larger problems can be solved. Chapter 6 then examines an important class of network problems with non-serial phase structures and exploits dimensionality reduction techniques, such as the pseudo-stage concept, branch compression, and optimal order elimination methods to solve large-scale, nonlinear network scheduling problems. Chapters 7 to 11 consider the flow-shop scheduling problem under different objectives and constraints. Chapter 12 discusses the job-shop-scheduling problem. The book will be useful to economists, planners, and graduate students in the fields of mathematics, operations research, management science, computer science, and engineering.




Handbook on Scheduling


Book Description

This book provides a theoretical and application-oriented analysis of deterministic scheduling problems in advanced planning and computer systems. The text examines scheduling problems across a range of parameters: job priority, release times, due dates, processing times, precedence constraints, resource usage and more, focusing on such topics as computer systems and supply chain management. Discussion includes single and parallel processors, flexible shops and manufacturing systems, and resource-constrained project scheduling. Many applications from industry and service operations management and case studies are described. The handbook will be useful to a broad audience, from researchers to practitioners, graduate and advanced undergraduate students.




Symposium on the Theory of Scheduling and Its Applications


Book Description

The theory of scheduling is receiving increased emphasis in research and practice for at least three good reasons. F~~t, the management of large scale projects resolves itself, in the final analysis, into problems of scheduling interacting activities subject to limited resources. Second, a great deal of "fat" that used to exist in the past in production, distribution, and service systems is eliminated, thanks to tighter managerial controls in information systems, in financial management, in logistics, and in many other facets of industrial enterprises and military installations. Tighter scheduling methods are therefore called for. Thi~d, the study of scheduling problems involves the study of combina torial problems and optimization over discrete spaces which represent a radical, and interesting, departure from classical mathematics. This area of study has attracted a good number of distinguished researchers, engineers as well as mathematicians. There is a serious attempt to apply known number theory, and perhaps develop new theory, that would cope with the new problems. The computer enters the picture in novel and ingenious ways, which has not been possible before; etc. To those workinQ in the area, whether in theory or in practice, progress proceeds at an exhilarating pace, with new mathematical structures and computational approaches being continuously introduced to model and solve the problems in novel, and oftentimes ingenious ways.




Principles of Sequencing and Scheduling


Book Description

An up-to-date and comprehensive treatment of the fundamentals of scheduling theory, including recent advances and state-of-the-art topics Principles of Sequencing and Scheduling strikes a unique balance between theory and practice, providing an accessible introduction to the concepts, methods, and results of scheduling theory and its core topics. With real-world examples and up-to-date modeling techniques, the book equips readers with the basic knowledge needed for understanding scheduling theory and delving into its applications. The authors begin with an introduction and overview of sequencing and scheduling, including single-machine sequencing, optimization and heuristic solution methods, and models with earliness and tardiness penalties. The most current material on stochastic scheduling, including correct scheduling of safety time and the use of simulation for optimization, is then presented and integrated with deterministic models. Additional topical coverage includes: Extensions of the basic model Parallel-machine models Flow shop scheduling Scheduling groups of jobs The job shop problem Simulation models for the dynamic job shop Network methods for project scheduling Resource-constrained project scheduling Stochastic and safe scheduling Extensive end-of-chapter exercises are provided, some of which are spreadsheet-oriented, and link scheduling theory to the most popular analytic platform among today's students and practitioners—the Microsoft Office Excel® spreadsheet. Extensive references direct readers to additional literature, and the book's related Web site houses material that reinforces the book's concepts, including research notes, data sets, and examples from the text. Principles of Sequencing and Scheduling is an excellent book for courses on sequencing and scheduling at the upper-undergraduate and graduate levels. It is also a valuable reference for researchers and practitioners in the fields of statistics, computer science, operations research, and engineering.




A Book of Open Shop Scheduling


Book Description

This book provides an in-depth presentation of algorithms for and complexity of open shop scheduling. Open shops allow operations of a job to be executed in any order, contrary to flow and job shops where the order is pre-specified. The author brings the field up to date with more emphasis on new and recent results, and connections with graph edge coloring and mathematical programming. The book explores applications to production and operations management, wireless network scheduling, and timetabling. The book is addressed to researchers, graduate students, and practitioners in Operations Research, Operations Management, computer science and mathematics, who are developing and using mathematical approaches to applications in manufacturing, services and distributed wireless network scheduling.




Introduction to Scheduling


Book Description

Full of practical examples, Introduction to Scheduling presents the basic concepts and methods, fundamental results, and recent developments of scheduling theory. With contributions from highly respected experts, it provides self-contained, easy-to-follow, yet rigorous presentations of the material.The book first classifies scheduling problems and