Schwarz-Christoffel Mapping


Book Description

This book provides a comprehensive look at the Schwarz-Christoffel transformation, including its history and foundations, practical computation, common and less common variations, and many applications in fields such as electromagnetism, fluid flow, design and inverse problems, and the solution of linear systems of equations. It is an accessible resource for engineers, scientists, and applied mathematicians who seek more experience with theoretical or computational conformal mapping techniques. The most important theoretical results are stated and proved, but the emphasis throughout remains on concrete understanding and implementation, as evidenced by the 76 figures based on quantitatively correct illustrative examples. There are over 150 classical and modern reference works cited for readers needing more details. There is also a brief appendix illustrating the use of the Schwarz-Christoffel Toolbox for MATLAB, a package for computation of these maps.




Schwarz-Christoffel Mapping


Book Description

This book provides a comprehensive look at the Schwarz-Christoffel transformation, including its history and foundations, practical computation, common and less common variations, and its many applications. It is intended as an accessible resource for engineers, scientists, and applied mathematicians who may not have much prior experience with theoretical or computational conformal mapping techniques.




Schwarz-Christoffel Mapping


Book Description

This book provides a comprehensive look at the Schwarz-Christoffel transformation, including its history and foundations, practical computation, common and less common variations, and many applications in fields such as electromagnetism, fluid flow, design and inverse problems, and the solution of linear systems of equations. It is an accessible resource for engineers, scientists, and applied mathematicians who seek more experience with theoretical or computational conformal mapping techniques. The most important theoretical results are stated and proved, but the emphasis throughout remains on concrete understanding and implementation. There is a brief appendix illustrating the use of the Schwarz-Christoffel Toolbox for MATLAB, the state-of-the-art package for computation of these maps.




Conformal Mapping


Book Description

Conformal mapping is a field in which pure and applied mathematics are both involved. This book tries to bridge the gulf that many times divides these two disciplines by combining the theoretical and practical approaches to the subject. It will interest the pure mathematician, engineer, physicist, and applied mathematician. The potential theory and complex function theory necessary for a full treatment of conformal mapping are developed in the first four chapters, so the reader needs no other text on complex variables. These chapters cover harmonic functions, analytic functions, the complex integral calculus, and families of analytic functions. Included here are discussions of Green's formula, the Poisson formula, the Cauchy-Riemann equations, Cauchy's theorem, the Laurent series, and the Residue theorem. The final three chapters consider in detail conformal mapping of simply-connected domains, mapping properties of special functions, and conformal mapping of multiply-connected domains. The coverage here includes such topics as the Schwarz lemma, the Riemann mapping theorem, the Schwarz-Christoffel formula, univalent functions, the kernel function, elliptic functions, univalent functions, the kernel function, elliptic functions, the Schwarzian s-functions, canonical domains, and bounded functions. There are many problems and exercises, making the book useful for both self-study and classroom use. The author, former professor of mathematics at Carnegie-Mellon University, has designed the book as a semester's introduction to functions of a complex variable followed by a one-year graduate course in conformal mapping. The material is presented simply and clearly, and the only prerequisite is a good working knowledge of advanced calculus.




Mostly Surfaces


Book Description

The goal of the book is to present a tapestry of ideas from various areas of mathematics in a clear and rigorous yet informal and friendly way. Prerequisites include undergraduate courses in real analysis and in linear algebra, and some knowledge of complex analysis. --from publisher description.




Handbook of Conformal Mappings and Applications


Book Description

The subject of conformal mappings is a major part of geometric function theory that gained prominence after the publication of the Riemann mapping theorem — for every simply connected domain of the extended complex plane there is a univalent and meromorphic function that maps such a domain conformally onto the unit disk. The Handbook of Conformal Mappings and Applications is a compendium of at least all known conformal maps to date, with diagrams and description, and all possible applications in different scientific disciplines, such as: fluid flows, heat transfer, acoustics, electromagnetic fields as static fields in electricity and magnetism, various mathematical models and methods, including solutions of certain integral equations.




Computational Conformal Mapping


Book Description

A textbook for a graduate class or for self-study by students of applied mathematics and engineering. Assumes at least a first course in complex analysis with emphasis on conformal mapping and Schwarz- Christoffel transformation, a first course in numerical analysis, a solid working competence with the Mathematica software, and some additional knowledge of programming languages. Introduces the theory and computation of conformal mappings of regions that are connected, simply or multiply, onto the unit disk or canonical regions in order to solve boundary value problems. Annotation copyrighted by Book News, Inc., Portland, OR




Complex Analysis with MATHEMATICA®


Book Description

This book presents a way of learning complex analysis, using Mathematica. Includes CD with electronic version of the book.




2D Electrostatic Fields


Book Description

This book demonstrates how to use functions of a complex variable to solve engineering problems that obey the 2D Laplace equation (and in some cases the 2D Poisson equation). The book was written with the engineer/physicist in mind and the majority of the book focuses on electrostatics. A key benefit of the complex variable approach to electrostatics is the visualization of field lines through the use of field maps. With todays’ powerful computers and mathematical software programs, field maps are easily generated once the complex potential has been determined. Additionally, problems that would have been considered out of scope previously are now easily solved with these mathematical software programs. For example, solutions requiring the use of non-elementary functions such as elliptic and hypergeometric functions would have been viewed as not practical in the past due to the tedious use of look up tables for evaluation. Now, elliptic and hypergeometric functions are built-in functions for most mathematical software programs making their evaluation as easy as a trigonometric function. Key highlights in the book include 2D electrostatics completely formulated in terms of complex variables More than 60 electrostatic field maps Comprehensive treatment for obtaining Green’s functions with conformal mapping Fully worked Schwarz-Christoffel transformations to more than usual number of problems A full chapter devoted to solving practical problems at an advanced level Detailed solutions to all end of chapter problems available on book’s website Although the text is primarily self-contained, the reader is assumed to have taken differential and integral calculus and introductory courses in complex variables and electromagnetics.




Conformal Maps And Geometry


Book Description

'I very much enjoyed reading this book … Each chapter comes with well thought-out exercises, solutions to which are given at the end of the chapter. Conformal Maps and Geometry presents key topics in geometric function theory and the theory of univalent functions, and also prepares the reader to progress to study the SLE. It succeeds admirably on both counts.'MathSciNetGeometric function theory is one of the most interesting parts of complex analysis, an area that has become increasingly relevant as a key feature in the theory of Schramm-Loewner evolution.Though Riemann mapping theorem is frequently explored, there are few texts that discuss general theory of univalent maps, conformal invariants, and Loewner evolution. This textbook provides an accessible foundation of the theory of conformal maps and their connections with geometry.It offers a unique view of the field, as it is one of the first to discuss general theory of univalent maps at a graduate level, while introducing more complex theories of conformal invariants and extremal lengths. Conformal Maps and Geometry is an ideal resource for graduate courses in Complex Analysis or as an analytic prerequisite to study the theory of Schramm-Loewner evolution.