Statistical Design - Chemometrics


Book Description

Statistical Design-Chemometrics is applicable to researchers and professionals who wish to perform experiments in chemometrics and carry out analysis of the data in the most efficient way possible. The language is clear, direct and oriented towards real applications. The book provides 106 exercises with answers to accompany the study of theoretical principles. Forty two cases studies with real data are presented showing designs and the complete statistical analyses for problems in the areas chromatography, electroanalytical and electrochemistry, calibration, polymers, gas adsorption, semiconductors, food technology, biotechnology, photochemistry, catalysis, detergents and ceramics. These studies serve as a guide that the reader can use to perform correct data analyses.-Provides 42 case studies containing step-by-step descriptions of calculational procedures that can be applied to most real optimization problems-Contains 106 theoretical exercises to test individual learning and to provide classroom exercises and material for written tests and exams-Written in a language that facilitates learning for physical and biological scientists and engineers-Takes a practical approach for those involved in industrial optimization problems




Data-Driven Science and Engineering


Book Description

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.







Data Fusion Methodology and Applications


Book Description

Data Fusion Methodology and Applications explores the data-driven discovery paradigm in science and the need to handle large amounts of diverse data. Drivers of this change include the increased availability and accessibility of hyphenated analytical platforms, imaging techniques, the explosion of omics data, and the development of information technology. As data-driven research deals with an inductive attitude that aims to extract information and build models capable of inferring the underlying phenomena from the data itself, this book explores the challenges and methodologies used to integrate data from multiple sources, analytical platforms, different modalities, and varying timescales. - Presents the first comprehensive textbook on data fusion, focusing on all aspects of data-driven discovery - Includes comprehensible, theoretical chapters written for large and diverse audiences - Provides a wealth of selected application to the topics included




Data Science


Book Description

A concise introduction to the emerging field of data science, explaining its evolution, relation to machine learning, current uses, data infrastructure issues, and ethical challenges. The goal of data science is to improve decision making through the analysis of data. Today data science determines the ads we see online, the books and movies that are recommended to us online, which emails are filtered into our spam folders, and even how much we pay for health insurance. This volume in the MIT Press Essential Knowledge series offers a concise introduction to the emerging field of data science, explaining its evolution, current uses, data infrastructure issues, and ethical challenges. It has never been easier for organizations to gather, store, and process data. Use of data science is driven by the rise of big data and social media, the development of high-performance computing, and the emergence of such powerful methods for data analysis and modeling as deep learning. Data science encompasses a set of principles, problem definitions, algorithms, and processes for extracting non-obvious and useful patterns from large datasets. It is closely related to the fields of data mining and machine learning, but broader in scope. This book offers a brief history of the field, introduces fundamental data concepts, and describes the stages in a data science project. It considers data infrastructure and the challenges posed by integrating data from multiple sources, introduces the basics of machine learning, and discusses how to link machine learning expertise with real-world problems. The book also reviews ethical and legal issues, developments in data regulation, and computational approaches to preserving privacy. Finally, it considers the future impact of data science and offers principles for success in data science projects.




Hyperspectral Imaging


Book Description

Hyperspectral Imaging, Volume 32, presents a comprehensive exploration of the different analytical methodologies applied on hyperspectral imaging and a state-of-the-art analysis of applications in different scientific and industrial areas. This book presents, for the first time, a comprehensive collection of the main multivariate algorithms used for hyperspectral image analysis in different fields of application. The benefits, drawbacks and suitability of each are fully discussed, along with examples of their application. Users will find state-of-the art information on the machinery for hyperspectral image acquisition, along with a critical assessment of the usage of hyperspectral imaging in diverse scientific fields. - Provides a comprehensive roadmap of hyperspectral image analysis, with benefits and considerations for each method discussed - Covers state-of-the-art applications in different scientific fields - Discusses the implementation of hyperspectral devices in different environments




digitalSTS


Book Description

New perspectives on digital scholarship that speak to today's computational realities Scholars across the humanities, social sciences, and information sciences are grappling with how best to study virtual environments, use computational tools in their research, and engage audiences with their results. Classic work in science and technology studies (STS) has played a central role in how these fields analyze digital technologies, but many of its key examples do not speak to today’s computational realities. This groundbreaking collection brings together a world-class group of contributors to refresh the canon for contemporary digital scholarship. In twenty-five pioneering and incisive essays, this unique digital field guide offers innovative new approaches to digital scholarship, the design of digital tools and objects, and the deployment of critically grounded technologies for analysis and discovery. Contributors cover a broad range of topics, including software development, hackathons, digitized objects, diversity in the tech sector, and distributed scientific collaborations. They discuss methodological considerations of social networks and data analysis, design projects that can translate STS concepts into durable scientific work, and much more. Featuring a concise introduction by Janet Vertesi and David Ribes and accompanied by an interactive microsite, this book provides new perspectives on digital scholarship that will shape the agenda for tomorrow’s generation of STS researchers and practitioners.







Human-Centered Data Science


Book Description

Best practices for addressing the bias and inequality that may result from the automated collection, analysis, and distribution of large datasets. Human-centered data science is a new interdisciplinary field that draws from human-computer interaction, social science, statistics, and computational techniques. This book, written by founders of the field, introduces best practices for addressing the bias and inequality that may result from the automated collection, analysis, and distribution of very large datasets. It offers a brief and accessible overview of many common statistical and algorithmic data science techniques, explains human-centered approaches to data science problems, and presents practical guidelines and real-world case studies to help readers apply these methods. The authors explain how data scientists’ choices are involved at every stage of the data science workflow—and show how a human-centered approach can enhance each one, by making the process more transparent, asking questions, and considering the social context of the data. They describe how tools from social science might be incorporated into data science practices, discuss different types of collaboration, and consider data storytelling through visualization. The book shows that data science practitioners can build rigorous and ethical algorithms and design projects that use cutting-edge computational tools and address social concerns.




Scientific Data Management


Book Description

Dealing with the volume, complexity, and diversity of data currently being generated by scientific experiments and simulations often causes scientists to waste productive time. Scientific Data Management: Challenges, Technology, and Deployment describes cutting-edge technologies and solutions for managing and analyzing vast amounts of data, helping scientists focus on their scientific goals. The book begins with coverage of efficient storage systems, discussing how to write and read large volumes of data without slowing the simulation, analysis, or visualization processes. It then focuses on the efficient data movement and management of storage spaces and explores emerging database systems for scientific data. The book also addresses how to best organize data for analysis purposes, how to effectively conduct searches over large datasets, how to successfully automate multistep scientific process workflows, and how to automatically collect metadata and lineage information. This book provides a comprehensive understanding of the latest techniques for managing data during scientific exploration processes, from data generation to data analysis. Enhanced by numerous detailed color images, it includes real-world examples of applications drawn from biology, ecology, geology, climatology, and more. Check out Dr. Shoshani discuss the book during an interview with International Science Grid This Week (iSGTW): http: //www.isgtw.org/?pid=1002259