The Art of Doing Science and Engineering


Book Description

A groundbreaking treatise by one of the great mathematicians of our time, who argues that highly effective thinking can be learned. What spurs on and inspires a great idea? Can we train ourselves to think in a way that will enable world-changing understandings and insights to emerge? Richard Hamming said we can, and first inspired a generation of engineers, scientists, and researchers in 1986 with "You and Your Research," an electrifying sermon on why some scientists do great work, why most don't, why he did, and why you should, too. The Art of Doing Science and Engineering is the full expression of what "You and Your Research" outlined. It's a book about thinking; more specifically, a style of thinking by which great ideas are conceived. The book is filled with stories of great people performing mighty deeds––but they are not meant to simply be admired. Instead, they are to be aspired to, learned from, and surpassed. Hamming consistently returns to Shannon’s information theory, Einstein’s relativity, Grace Hopper’s work on high-level programming, Kaiser’s work on digital fillers, and his own error-correcting codes. He also recounts a number of his spectacular failures as clear examples of what to avoid. Originally published in 1996 and adapted from a course that Hamming taught at the U.S. Naval Postgraduate School, this edition includes an all-new foreword by designer, engineer, and founder of Dynamicland Bret Victor, and more than 70 redrawn graphs and charts. The Art of Doing Science and Engineering is a reminder that a childlike capacity for learning and creativity are accessible to everyone. Hamming was as much a teacher as a scientist, and having spent a lifetime forming and confirming a theory of great people, he prepares the next generation for even greater greatness.




Data-Driven Science and Engineering


Book Description

A textbook covering data-science and machine learning methods for modelling and control in engineering and science, with Python and MATLAB®.




Adhesion Science and Engineering


Book Description

The Mechanics of Adhesion shows that adhesion science and technology is inherently an interdisciplinary field, requiring fundamental understanding of mechanics, surfaces, and materials. This volume comprises 19 chapters. Starting with a background and introduction to stress transfer principles; fracture mechanics and singularities; and an energy approach to debonding, the volume continues with analysis of structural lap and butt joint configurations. It then continues with discussions of test methods for strength and constitutive properties; fracture; peel; coatings, the case of adhesion to a single substrate; elastomeric adhesives such as sealants. The role of mechanics in determining the locus of failure in bonded joints is discussed, followed by a chapter on rheology relevant to adhesives and sealants. Pressure sensitive adhesive performance; the principles of tack and tack measurements; and contact mechanics relevant to wetting and surface energy measurements are then covered. The volume concludes with sections on fibermatrix bonding and reinforcement; durability considerations for adhesive bonds; ultrasonic non-destructive evaluation of adhesive bonds; and design of adhesive bonds from a strength perspective. This book will be of interest to practitioners in the fields of engineering and to those with an interest in adhesion science.




Science and Engineering Careers in the United States


Book Description

Beginning in the early 2000s, there was an upsurge of national concern over the state of the science and engineering job market that sparked a plethora of studies, commission reports, and a presidential initiative, all stressing the importance of maintaining American competitiveness in these fields. Science and Engineering Careers in the United States is the first major academic study to probe the issues that underlie these concerns. This volume provides new information on the economics of the postgraduate science and engineering job market, addressing such topics as the factors that determine the supply of PhDs, the career paths they follow after graduation, and the creation and use of knowledge as it is reflected by the amount of papers and patents produced. A distinguished team of contributors also explores the tensions between industry and academe in recruiting graduates, the influx of foreign-born doctorates, and the success of female doctorates. Science and Engineering Careers in the United States will raise new questions about stimulating innovation and growth in the American economy.




Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices


Book Description

When it’s time for a game change, you need a guide to the new rules. Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices provides a play-by-play understanding of the practices strand of A Framework for K–12 Science Education (Framework) and the Next Generation Science Standards (NGSS). Written in clear, nontechnical language, this book provides a wealth of real-world examples to show you what’s different about practice-centered teaching and learning at all grade levels. The book addresses three important questions: 1. How will engaging students in science and engineering practices help improve science education? 2. What do the eight practices look like in the classroom? 3. How can educators engage students in practices to bring the NGSS to life? Helping Students Make Sense of the World Using Next Generation Science and Engineering Practices was developed for K–12 science teachers, curriculum developers, teacher educators, and administrators. Many of its authors contributed to the Framework’s initial vision and tested their ideas in actual science classrooms. If you want a fresh game plan to help students work together to generate and revise knowledge—not just receive and repeat information—this book is for you.




Science and Engineering of Small Arms


Book Description

This book initiates with the story of the evolution of firearms to enable the reader to appreciate the sequence of the development of firearms. It discusses different classes of small arms, their mechanics, internal and external ballistics. Further, it covers the design idea of barrels and actions, various operating principles and relevant discussion on ammunition and propellants. The principle of quality in the design of the small arms is also elaborated in the desired degree. The book brings out the relevance of modern manufacturing technologies like MIM and various surface treatments, and polymers for enhancement of product quality. To appreciate the sophistication of the architecture, the book presents the anatomical details of a few small arms of reputes. Provides complete understanding of overall small weapon systems Explores mechanics and physics of small arms Discusses proper design, quality control, and manufacturing process selections for a good weapon Covers common type of weapon failures and catastrophic failure Includes relevance of manufacturing processes The book is aimed at professionals and graduate students in Mechanical Design, Armament Design, Gun Design including personnel in the military, paramilitary, police, and all other armed forces and their maintenance crews.




Science and Engineering of Hydrogen-Based Energy Technologies


Book Description

Science and Engineering of Hydrogen-Based Energy Technologies explores the generation of energy using hydrogen and hydrogen-rich fuels in fuel cells from the perspective of its integration into renewable energy systems using the most sound and current scientific knowledge. The book first examines the evolution of energy utilization and the role expected to be played by hydrogen energy technologies in the world's energy mix, not just for energy generation, but also for carbon capture, storage and utilization. It provides a general overview of the most common and promising types of fuel cells, such as PEMFCs, SOFCs and direct alcohol fuel cells. The co-production of chemical and electrolysis cells, as well as the available and future materials for fuel cells production are discussed. It then delves into the production of hydrogen from biomass, including waste materials, and from excess electricity produced by other renewable energy sources, such as solar, wind, hydro and geothermal. The main technological approaches to hydrogen storage are presented, along with several possible hydrogen energy engineering applications. Science and Engineering of Hydrogen-Based Energy Technologies's unique approach to hydrogen energy systems makes it useful for energy engineering researchers, professionals and graduate students in this field. Policy makers, energy planning and management professionals, and energy analysts can also benefit from the comprehensive overview that it provides. - Presents engineering fundamentals, commercially deployed technologies, up-and-coming developments and applications through a systemic approach - Explores the integration of hydrogen technologies in renewable energy systems, including solar, wind, bioenergy and ocean energy - Covers engineering standards, guidelines and regulations, as well as policy and social aspects for large-scale deployment of these technologies




Bioseparations Science and Engineering


Book Description

Designed for undergraduates, graduate students, and industry practitioners, Bioseparations Science and Engineering fills a critical need in the field of bioseparations. Current, comprehensive, and concise, it covers bioseparations unit operations in unprecedented depth. In each of the chapters, the authors use a consistent method of explaining unit operations, starting with a qualitative description noting the significance and general application of the unit operation. They then illustrate the scientific application of the operation, develop the required mathematical theory, and finally, describe the applications of the theory in engineering practice, with an emphasis on design and scaleup. Unique to this text is a chapter dedicated to bioseparations process design and economics, in which a process simular, SuperPro Designer® is used to analyze and evaluate the production of three important biological products. New to this second edition are updated discussions of moment analysis, computer simulation, membrane chromatography, and evaporation, among others, as well as revised problem sets. Unique features include basic information about bioproducts and engineering analysis and a chapter with bioseparations laboratory exercises. Bioseparations Science and Engineering is ideal for students and professionals working in or studying bioseparations, and is the premier text in the field.




Science for Engineering


Book Description

Science for Engineering offers an introductory textbook for students of engineering science and assumes no prior background in engineering. John Bird focuses upon examples rather than theory, enabling students to develop a sound understanding of engineering systems in terms of the basic laws and principles. This book includes over 580 worked examples, 1300 further problems, 425 multiple choice questions (with answers), and contains sections covering the mathematics that students will require within their engineering studies, mechanical applications, electrical applications and engineering systems. This new edition of Science for Engineering covers the fundamental scientific knowledge that all trainee engineers must acquire in order to pass their exams. It has also been brought fully in line with the compulsory science and mathematics units in the new engineering course specifications. Supported by free lecturer materials that can be found at www.routledge/cw/bird This resource includes full worked solutions of all 1300 of the further problems for lecturers/instructors use, and the full solutions and marking scheme for the fifteen revision tests. In addition, all illustrations will be available for downloading.




The Art of Insight in Science and Engineering


Book Description

Tools to make hard problems easier to solve. In this book, Sanjoy Mahajan shows us that the way to master complexity is through insight rather than precision. Precision can overwhelm us with information, whereas insight connects seemingly disparate pieces of information into a simple picture. Unlike computers, humans depend on insight. Based on the author's fifteen years of teaching at MIT, Cambridge University, and Olin College, The Art of Insight in Science and Engineering shows us how to build insight and find understanding, giving readers tools to help them solve any problem in science and engineering. To master complexity, we can organize it or discard it. The Art of Insight in Science and Engineering first teaches the tools for organizing complexity, then distinguishes the two paths for discarding complexity: with and without loss of information. Questions and problems throughout the text help readers master and apply these groups of tools. Armed with this three-part toolchest, and without complicated mathematics, readers can estimate the flight range of birds and planes and the strength of chemical bonds, understand the physics of pianos and xylophones, and explain why skies are blue and sunsets are red. The Art of Insight in Science and Engineering will appear in print and online under a Creative Commons Noncommercial Share Alike license.