Science of Fullerenes and Carbon Nanotubes


Book Description

The discovery of fullerenes (also known as buckyballs) has generated tremendous excitement and opened up a new field of carbon chemistry. As the first book available on this topic, this volume will be a landmark reference in the field. Because buckyballs are essentially closed hollow cages made up of carbon atoms, they can be manipulated in a variety of ways to yield never-before-seen materials. The balls can, for instance, be doped with atoms or pulled out into tubules and filled with lead to provide properties of high-temperature superconductivity. Researchers can now create their own buckyballs in a process that is almost as simple as making soot, making this research as inexpensive as it is exotic (which has doubtless contributed to its popularity). Researchers anticipate that fullerenes will offer boundless opportunities in the development of new products, drugs and materials.Science of Fullerenes and Carbon Nanotubes introduces materials scientists, chemists, and solid state physicists to the field of fullerenes, and discusses the unique properties and applications. both current and future, of all classes of fullerenes.Key Features* First comprehensive resource on fullerenes and their applications* Provides an introduction to the topic* Presents an extensive discussion of current and future applications of Fullerenes* Covers all classes of fullerenes




Medicinal Chemistry and Pharmacological Potential of Fullerenes and Carbon Nanotubes


Book Description

Fullerenes and nanotubes are two classes of carbon structures or allotropes, which were discovered about 17 years ago. Since that time, many chemical derivatives have been synthesized using fullerenes and nanotubes as building blocks. Particularly promising was the theory that the chemical properties of fullerenes, and certain derivatives, made them likely candidates for anticancer drugs, inhibitors of viruses such as HIV, or even as anti-bacterials. Their cyctotoxicity can also be controlled by specific circumstances. In addition, the funtionalization of nanotubes has not only produced relatively simple derivatives, but also complex hybrids with biological macromolecules, which show unique supramolecular architecture and which are promising in many medical applications. The application of fullerenes and nanotubes in medicine is at the frontier of our knowledge, thus the work in this field represents the basis for future novel developments.




The Chemistry of Fullerenes


Book Description

The closed-cage carbon molecules known as fullerenes provide an entirely new branch of chemistry, materials science, and physics. Fullerene research is now engaging the frenetic attention of thousands of scientists. Initially, the chemistry was relatively slow to develop due to the low availability of material, and the need for state-of-the-art instrumentation for product analysis. This research area is now very definitely up-and-running, and will soon become the main focus of attention in the fullerene field. The number of published papers already runs into hundreds, and the main features of fullerene reactivity have been established. This book describes all of the known types of reactions as well as the means of production, the purification, and the properties of fullerenes.




Fullerens, Graphenes and Nanotubes


Book Description

Fullerens, Graphenes and Nanotubes: A Pharmaceutical Approach shows how carbon nanomaterials are used in the pharmaceutical industry. While there are various books on the carbonaceous nanomaterials available on the market, none approach the subject from a pharmaceutical point-of-view. In this context, the book covers different applications of carbonaceous nanomaterials. Chapters examine different types of carbon nanomaterials and explore how they are used in such areas as cancer treatments, pulse sensing and prosthetics. Readers will find this book to be a valuable reference resource for those working in the areas of carbon materials, nanomaterials and pharmaceutical science. - Explains how the unique properties of carbon-based nanomaterials allow them to be used to create effective drug delivery systems - Covers how carbon-based nanomaterials should be prepared for use in pharmaceutical applications - Discusses the relative toxicity of a range of carbon-based nanomaterials - Considers the safety of their use in different types of drugs




Frontiers of Multifunctional Nanosystems


Book Description

Proceedings of the NATO Advanced Research Workshop on Frontiers in Molecular-Scale Science and Technology of Fullerence, Nanotube, Nanosilicon, Biopolymer (DNA, Protein) Multifunctional Nanosystems, Kyiv, Ukraine, 9-12 September 2001




Fragments of Fullerenes and Carbon Nanotubes


Book Description

This book is the first of its kind to reflect upon the intense and rapidly growing interest in open geodesic polyaromatic molecules, specifically focusing on their synthesis and reactivity in metal binding reactions. The book broadly covers all aspects related to the fullerene fragment chemistry: current synthetic techniques, description of the available members of this new family (which has grown to more than two dozens members, with none being available commercially), molecular geometry and trends in the solid state packing, as well as extensions into physical properties and new buckybowl-based molecules and materials. It covers fundamental research related to a new class of hydrocarbons, namely open geodesic polyarenes that map onto the surfaces of fullerenes (and referred to as fullerene fragments or buckybowls.




Carbon Nanotubes and Graphene


Book Description

Carbon Nanotubes and Graphene is a timely second edition of the original Science and Technology of Carbon Nanotubes. Updated to include expanded coverage of the preparation, purification, structural characterization, and common application areas of single- and multi-walled CNT structures, this work compares, contrasts, and, where appropriate, unitizes CNT to graphene. This much expanded second edition reference supports knowledge discovery, production of impactful carbon research, encourages transition between research fields, and aids the formation of emergent applications. New chapters encompass recent developments in the theoretical treatments of electronic and vibrational structures, and magnetic, optical, and electrical solid-state properties, providing a vital base to research. Current and potential applications of both materials, including the prospect for large-scale synthesis of graphene, biological structures, and flexible electronics, are also critically discussed. - Updated discussion of properties, structure, and morphology of biological and flexible electronic applications aids fundamental knowledge discovery - Innovative parallel focus on nanotubes and graphene enables you to learn from the successes and failures of, respectively, mature and emergent partner research disciplines - High-quality figures and tables on physical and mathematical applications expertly summarize key information – essential if you need quick, critically relevant data




The Physics of Fullerene-Based and Fullerene-Related Materials


Book Description

Krätschmer and Huffman's revolutionary discovery of a new solid phase of carbon, solid C60, in 1990 opened the way to an entire new class of materials with physical properties so diverse that their richness has not yet been fully exploited. Moreover, as a by-product of fullerene research, carbon nanotubes were later identified, from which novel nanostructures originated that are currently fascinating materials scientists worldwide. Rivers of words have been written on both fullerenes and nanotubes, in the form of journal articles, conference proceedings and books. The present book offers, in a concise and self-contained manner, the basics of the science of these materials as well as detailed information on those aspects that have so far been better explored. Structural, electronic and dynamical properties are described as obtained from various measurements and state-of-the-art calculations. Their interrelation emerges as well as their possible dependence on, for example, preparation conditions or methods of investigation. By presenting and comparing data from different sources, experiment and theory, this book helps the reader to rapidly master the basic knowledge, to grasp important issues and critically discuss them. Ultimately, it aims to inspire him or her to find novel ways to approach still open questions. As such, this book is addressed to new researchers in the field as well as experts.




The Science and Technology of Carbon Nanotubes


Book Description

Carbon Nanotubes (CNT) is the material lying between fullerenes and graphite as a new member of carbon allotropes. The study of CNT has gradually become more and more independent from that of fullerenes. As a novel carbon material, CNTs will be far more useful and important than fullerenes from a practical point of view, in that they will be directly related to an ample field of nanotechnology. This book presents a timely, second-generation monograph covering as far as practical, application of CNT as the newest science of these materials. Most updated summaries for preparation, purification and structural characterisation of single walled CNT and multi walled CNT are given. Similarly, the most recent developments in the theoretical treatments of electronic structures and vibrational structures are covered. The newest magnetic, optical and electrical solid-state properties providing a vital base to actual application technologies are described. Explosive research trends towards application of CNTs, including the prospect for large-scale synthesis, are also introduced. It is the most remarkable feature of this monograph that it devotes more than a half of the whole volume to practical aspects and offers readers the newest developments of the science and technological aspects of CNTs.




Fullerenes


Book Description

At the interface between chemistry, biology, and physics, fullerenes were one of the first objects to be dissected, scanned, and studied by the modern multi-specialty biotech community and are currently thriving in both research and practical application. Other members of the sp2 nanocarbon family, such as nanotubes and graphene, are currently bein