Science of Synthesis: Photocatalysis in Organic Synthesis


Book Description

The field of photocatalysis has developed rapidly over the last decade and it is time to clarify its impact on organic synthesis. This volume is an opportunity to provide the defining and current reference work for this field. A primary objective is to collect together the most useful, practical, and reliable methods for photocatalysis and to introduce them to a larger audience. The fundamental concepts of photophysics are introduduced and laboratory set-ups are described, enabling newcomers to the field to instantly apply these new tools in synthesis. Rather than aiming for comprehensive coverage, solutions for challenging transformations in synthesis applying visible light and suitable dyes are presented. A team of pioneers and leaders in the field has been assembled, who discuss both the practical and conceptual aspects of this rapidly growing field. Scope, limitations, and mechanism of the reactions are covered and key experimental procedures are included.




Visible Light Photocatalysis in Organic Chemistry


Book Description

Filling the need for a ready reference that reflects the vast developments in this field, this book presents everything from fundamentals, applications, various reaction types, and technical applications. Edited by rising stars in the scientific community, the text focuses solely on visible light photocatalysis in the context of organic chemistry. This primarily entails photoinduced electron transfer and energy transfer chemistry sensitized by polypyridyl complexes, yet also includes the use of organic dyes and heterogeneous catalysts. A valuable resource to the synthetic organic community, polymer and medicinal chemists, as well as industry professionals.




Science of Synthesis: Dual Catalysis in Organic Synthesis 1


Book Description

The field of dual catalysis has developed rapidly over the last decade, and these volumes define its impact on organic synthesis. The most important, basic concepts of synergistic, dual catalytic cycles are introduced, providing newcomers to the field with reliable information on this new approach to facilitating the synthesis of organic molecules. Background information and reliable procedures for challenging transformations in synthesis are presented, applying the concept of cooperative dual catalysis as a means of increasing molecular complexity in the most efficient manner. The most useful, practical, and reliable methods for dual catalysis combining metal catalysts, organocatalysts, photocatalysts, and biocatalysts are presented.




Science of Synthesis: Photocatalysis in Organic Synthesis


Book Description

The field of photocatalysis has developed rapidly over the last decade and it is time to clarify its impact on organic synthesis. This volume is an opportunity to provide the defining and current reference work for this field. A primary objective is to collect together the most useful, practical, and reliable methods for photocatalysis and to introduce them to a larger audience. The fundamental concepts of photophysics are introduduced and laboratory set-ups are described, enabling newcomers to the field to instantly apply these new tools in synthesis. Rather than aiming for comprehensive coverage, solutions for challenging transformations in synthesis applying visible light and suitable dyes are presented. A team of pioneers and leaders in the field has been assembled, who discuss both the practical and conceptual aspects of this rapidly growing field. Scope, limitations, and mechanism of the reactions are covered and key experimental procedures are included.







CO2 as a Building Block in Organic Synthesis


Book Description

A guide to the fascinating application of CO2 as a building block in organic synthesis This important book explores modern organic synthesis’ use of the cheap, non-toxic and abundant chemical CO2as an attractive C1 building block. With contributions from an international panel of experts, CO2 as a Building Block in Organic Synthesis offers a review of the most important reactions which use CO2 as a building block in organic synthesis. The contributors examine a wide-range of CO2 reactions including methylation reactions, CH bond functionalization, carboxylation, cyclic carbonate synthesis, multicomponent reactions, and many more. The book reviews the most recent developments in the field and also: Presents the most important reactions like CH-bond functionalization, carboxylation, carbonate synthesis and many more Contains contributions from an international panel of experts Offers a comprehensive resource for academics and professionals in the field Written for organic chemists, chemists working with or on organometallics, catalytic chemists, pharmaceutical chemists, and chemists in industry, CO2 as Building Block in Organic Synthesis contains an analysis of the most important reactions which use CO2 as an effective building block in organic synthesis.




Organocatalysis


Book Description

Organocatalysis is considered today one of the three pillars in asymmetric catalysis, along with biocatalysis and organometallic catalysis. The possibility to combine organocatalysis with radical chemistry, photocatalysis and enabling technologies opened new avenues in organic synthesis.




Photoorganocatalysis In Organic Synthesis


Book Description

The use of organocatalysts able to photocatalyze an organic reaction is a rapidly growing field. These photocatalyzed transformations are more environmentally sustainable with respect to the use of expensive/toxic metal-based (photo)catalysts.Based on the authors' extensive experience in photogenerated intermediates, this book presents an overview on photocatalyzed organic processes having a synthetic significance, where an organic molecule functions as the photocatalyst.After a brief introduction defining the nature and the characteristics of a photoorganocatalyst (POC), the chapters are organized according to the class of POC used, as detailed below.Each chapter begins with a summary of the photophysical characteristics of the POCs and is followed by selected examples of synthetic applications. The last two chapters are devoted to the adoption of photoorganocatalysis in polymerization and to flow photoorganocatalysis. These in-depth explanations and practical applications make this title an essential reading for any chemistry student interested in organic (sustainable) synthesis.




Visible-Light-Active Photocatalysis


Book Description

A comprehensive and timely overview of this important and hot topic, with special emphasis placed on environmental applications and the potential for solar light harvesting. Following introductory chapters on environmental photocatalysis, water splitting, and applications in synthetic chemistry, further chapters focus on the synthesis and design of photocatalysts, solar energy conversion, and such environmental aspects as the removal of water pollutants, photocatalytic conversion of CO2. Besides metal oxide-based photocatalysts, the authors cover other relevant material classes including carbon-based nanomaterials and novel hybrid materials. Chapters on mechanistic aspects, computational modeling of photocatalysis and Challenges and perspectives of solar reactor design for industrial applications complete this unique survey of the subject. With its in-depth discussions ranging from a comprehensive understanding to the engineering of materials and applied devices, this is an invaluable resource for a range of disciplines.




Organic Redox Chemistry


Book Description

Organic Redox Chemistry Explore the most recent advancements and synthesis applications in redox chemistry Redox chemistry has emerged as a crucial research topic in synthetic method development. In Organic Redox Chemistry: Chemical, Photochemical and Electrochemical Syntheses, some key researchers in this field, including editors Dr. Frédéric W. Patureau and the late Dr. Jun-Ichi Yoshida, deliver an insightful exploration of this rapidly developing topic. This book highlights electron transfer processes in synthesis by using different techniques to initiate them, allowing for a multi-directional perspective in organic redox chemistry. Covering a wide array of the important and recent developments in the field, Organic Redox Chemistry will earn a place in the libraries of chemists seeking a one-stop resource that compares chemical, photochemical, and electrochemical methods in organic synthesis.