Guidance for the Description of Animal Research in Scientific Publications


Book Description

The publication of research articles involving animal studies is central to many disciplines in science and biomedicine. Effective descriptions in such publications enable researchers to interpret the data, evaluate and replicate findings, and move the science forward. Analyses of published studies with research animals have demonstrated numerous deficiencies in the reporting of details in research methods for animal studies. Considerable variation in the amount of information required by scientific publications and reported by authors undermines this basic scientific principle and results in the unnecessary use of animals and other resources in failed efforts to reproduce study results. Guidance for the Description of Animal Research in Scientific Publications outlines the information that should be included in scientific papers regarding the animal studies to ensure that the study can be replicated. The report urges journal editors to actively promote effective and ethical research by encouraging the provision of sufficient information. Examples of this information include: conditions of housing and husbandry, genetic nomenclature, microbial status, detailed experimental manipulations, and handling and use of pharmaceuticals. Inclusion of this information will enable assessment and interpretation of research findings and advancement of knowledge based on reproducible results.




Opening Science


Book Description

Modern information and communication technologies, together with a cultural upheaval within the research community, have profoundly changed research in nearly every aspect. Ranging from sharing and discussing ideas in social networks for scientists to new collaborative environments and novel publication formats, knowledge creation and dissemination as we know it is experiencing a vigorous shift towards increased transparency, collaboration and accessibility. Many assume that research workflows will change more in the next 20 years than they have in the last 200. This book provides researchers, decision makers, and other scientific stakeholders with a snapshot of the basics, the tools, and the underlying visions that drive the current scientific (r)evolution, often called ‘Open Science.’




Writing Science


Book Description

This book takes an integrated approach, using the principles of story structure to discuss every aspect of successful science writing, from the overall structure of a paper or proposal to individual sections, paragraphs, sentences, and words. It begins by building core arguments, analyzing why some stories are engaging and memorable while others are quickly forgotten, and proceeds to the elements of story structure, showing how the structures scientists and researchers use in papers and proposals fit into classical models. The book targets the internal structure of a paper, explaining how to write clear and professional sections, paragraphs, and sentences in a way that is clear and compelling.




Teaching Computational Thinking


Book Description

A guide for educators to incorporate computational thinking—a set of cognitive skills applied to problem solving—into a broad range of subjects. Computational thinking—a set of mental and cognitive tools applied to problem solving—is a fundamental skill that all of us (and not just computer scientists) draw on. Educators have found that computational thinking enhances learning across a range of subjects and reinforces students’ abilities in reading, writing, and arithmetic. This book offers a guide for incorporating computational thinking into middle school and high school classrooms, presenting a series of activities, projects, and tasks that employ a range of pedagogical practices and cross a variety of content areas. As students problem solve, communicate, persevere, work as a team, and learn from mistakes, they develop a concrete understanding of the abstract principles used in computer science to create code and other digital artifacts. The book guides students and teachers to integrate computer programming with visual art and geometry, generating abstract expressionist–style images; construct topological graphs that represent the relationships between characters in such literary works as Harry Potter and the Sorcerer’s Stone and Romeo and Juliet; apply Newtonian physics to the creation of computer games; and locate, analyze, and present empirical data relevant to social and political issues. Finally, the book lists a variety of classroom resources, including the programming languages Scratch (free to all) and Codesters (free to teachers). An accompanying website contains the executable programs used in the book’s activities.




Pharmaceutical Medicine


Book Description

The breadth of the pharmaceutical medicine can be daunting, but this book is designed to navigate a path through the speciality. Providing a broad overview of all topics relevant to the discipline of pharmaceutical medicine, it gives you the facts fast, in a user-friendly format, without having to dive through page upon page of dense text. With 136 chapters spread across 8 sections, the text offers a thorough grounding in issues ranging from medicines regulation to clinical trial design and data management. This makes it a useful revision aid for exams as well as giving you a taster of areas of pharmaceutical medicine adjacent to your current role. For healthcare professionals already working in the field, this book offers a guiding hand in difficult situations as well as supplying rapid access to the latest recommendations and guidelines. Written by authors with experience in the industry and drug regulation, this comprehensive and authoritative guide provides a shoulder to lean on throughout your pharmaceutical career.




The Right to Science


Book Description

The first serious, extended effort to use a human rights-based approach to address the scientific issues affecting society and the often-neglected human right to science.




A Framework for K-12 Science Education


Book Description

Science, engineering, and technology permeate nearly every facet of modern life and hold the key to solving many of humanity's most pressing current and future challenges. The United States' position in the global economy is declining, in part because U.S. workers lack fundamental knowledge in these fields. To address the critical issues of U.S. competitiveness and to better prepare the workforce, A Framework for K-12 Science Education proposes a new approach to K-12 science education that will capture students' interest and provide them with the necessary foundational knowledge in the field. A Framework for K-12 Science Education outlines a broad set of expectations for students in science and engineering in grades K-12. These expectations will inform the development of new standards for K-12 science education and, subsequently, revisions to curriculum, instruction, assessment, and professional development for educators. This book identifies three dimensions that convey the core ideas and practices around which science and engineering education in these grades should be built. These three dimensions are: crosscutting concepts that unify the study of science through their common application across science and engineering; scientific and engineering practices; and disciplinary core ideas in the physical sciences, life sciences, and earth and space sciences and for engineering, technology, and the applications of science. The overarching goal is for all high school graduates to have sufficient knowledge of science and engineering to engage in public discussions on science-related issues, be careful consumers of scientific and technical information, and enter the careers of their choice. A Framework for K-12 Science Education is the first step in a process that can inform state-level decisions and achieve a research-grounded basis for improving science instruction and learning across the country. The book will guide standards developers, teachers, curriculum designers, assessment developers, state and district science administrators, and educators who teach science in informal environments.




R for Data Science


Book Description

Learn how to use R to turn raw data into insight, knowledge, and understanding. This book introduces you to R, RStudio, and the tidyverse, a collection of R packages designed to work together to make data science fast, fluent, and fun. Suitable for readers with no previous programming experience, R for Data Science is designed to get you doing data science as quickly as possible. Authors Hadley Wickham and Garrett Grolemund guide you through the steps of importing, wrangling, exploring, and modeling your data and communicating the results. You'll get a complete, big-picture understanding of the data science cycle, along with basic tools you need to manage the details. Each section of the book is paired with exercises to help you practice what you've learned along the way. You'll learn how to: Wrangle—transform your datasets into a form convenient for analysis Program—learn powerful R tools for solving data problems with greater clarity and ease Explore—examine your data, generate hypotheses, and quickly test them Model—provide a low-dimensional summary that captures true "signals" in your dataset Communicate—learn R Markdown for integrating prose, code, and results




The Sociology of Science


Book Description

"The exploration of the social conditions that facilitate or retard the search for scientific knowledge has been the major theme of Robert K. Merton's work for forty years. This collection of papers [is] a fascinating overview of this sustained inquiry. . . . There are very few other books in sociology . . . with such meticulous scholarship, or so elegant a style. This collection of papers is, and is likely to remain for a long time, one of the most important books in sociology."—Joseph Ben-David, New York Times Book Review "The novelty of the approach, the erudition and elegance, and the unusual breadth of vision make this volume one of the most important contributions to sociology in general and to the sociology of science in particular. . . . Merton's Sociology of Science is a magisterial summary of the field."—Yehuda Elkana, American Journal of Sociology "Merton's work provides a rich feast for any scientist concerned for a genuine understanding of his own professional self. And Merton's industry, integrity, and humility are permanent witnesses to that ethos which he has done so much to define and support."—J. R. Ravetz, American Scientist "The essays not only exhibit a diverse and penetrating analysis and a deal of historical and contemporary examples, with concrete numerical data, but also make genuinely good reading because of the wit, the liveliness and the rich learning with which Merton writes."—Philip Morrison, Scientific American "Merton's impact on sociology as a whole has been large, and his impact on the sociology of science has been so momentous that the title of the book is apt, because Merton's writings represent modern sociology of science more than any other single writer."—Richard McClintock, Contemporary Sociology




Science Publications


Book Description