Scientific Basis for Nuclear Waste Management XX: Volume 465


Book Description

This book features scientific research that supports the safe and effective disposal of radioactive waste in a geological repository. One highlight of the volume is the opening talk by Rustum Roy, who was instrumental in establishing the first symposium on this topic in 1978. Professor Roy summarizes his views of the past 19 years of progress in the field. A second highlight is the participation by several Russian and Ukrainian scientists who authored papers on nuclear waste disposal aspects of the Chernobyl Unit 4 reactor that exploded in April 1986. Additional topics include: glass formulations and properties; glass/water interactions; cements in radioactive waste management; ceramic and crystalline waste forms; spent nuclear fuel; waste processing and treatment; radiation effects in ceramics, glasses and nuclear waste materials; waste package materials; radionuclide solubility and speciation; radionuclide sorption; radionuclide transport; repository backfill; performance assessment; natural analogues and excess plutonium dispositioning.




Symposium


Book Description




Scientific Basis for Nuclear Waste Management XXII: Volume 556


Book Description

Safe and effective management of nuclear waste provides a broad range of challenges for materials science. Waste processing, waste form and engineered barrier properties, interactions between engineered and geological systems, radiation effects, chemistry and transport of waste species, and long-term predictions of repository performance are just some of the scientific problems facing modern society. This book, the 22nd in a very successful series from MRS, offers an international and inter-disciplinary perspective on the issues, and features developments in both fundamental and applied areas. Topics include: development and characterization of ceramic waste forms; ceramic waste form corrosion; glass waste form processing; glass formulation, properties and structure; glass waste form corrosion; spent nuclear fuel; performance assessment; repository backfill; flow and transport; natural analogues; container corrosion; metal waste form corrosion; radionuclide speciation and solubility; radionuclide sorption; microbial effects; radiation effects; cement waste forms and waste treatment.




The Chemistry of the Actinide and Transactinide Elements (Set Vol.1-6)


Book Description

The fourth edition of "The Chemistry of the Actinide and Transactinide Elements" comprises all chapters in volumes 1 through 5 of the third edition (published in 2006) plus a new volume 6. To remain consistent with the plan of the first edition, “ ... to provide a comprehensive and uniform treatment of the chemistry of the actinide [and transactinide] elements for both the nuclear technologist and the inorganic and physical chemist,” and to be consistent with the maturity of the field, the fourth edition is organized in three parts. The first group of chapters follows the format of the first and second editions with chapters on individual elements or groups of elements that describe and interpret their chemical properties. A chapter on the chemical properties of the transactinide elements follows. The second group, chapters 15-26, summarizes and correlates physical and chemical properties that are in general unique to the actinide elements, because most of these elements contain partially-filled shells of 5f electrons whether present as isolated atoms or ions, as metals, as compounds, or as ions in solution. The third group, chapters 27-39, focuses on specialized topics that encompass contemporary fields related to actinides in the environment, in the human body, and in storage or wastes. Two appendices at the end of volume 5 tabulate important nuclear properties of all actinide and transactinide isotopes. Volume 6 (Chapters 32 through 39) consists of new chapters that focus on actinide species in the environment, actinide waste forms, nuclear fuels, analytical chemistry of plutonium, actinide chalcogenide and hydrothermal synthesis of actinide compounds. The subject and author indices and list of contributors encompass all six volumes.




Strategy and Methodology for Radioactive Waste Characterization


Book Description

Over the past decade significant progress has been achieved in the development of waste characterization and control procedures and equipment as a direct response to ever-increasing requirements for quality and reliability of information on waste characteristics. Failure in control procedures at any step can have important, adverse consequences and may result in producing waste packages which are not compliant with the waste acceptance criteria for disposal, thereby adversely impacting the repository. The information and guidance included in this publication corresponds to recent achievements and reflects the optimum approaches, thereby reducing the potential for error and enhancing the quality of the end product. -- Publisher's description.










Comprehensive Nuclear Materials


Book Description

Materials in a nuclear environment are exposed to extreme conditions of radiation, temperature and/or corrosion, and in many cases the combination of these makes the material behavior very different from conventional materials. This is evident for the four major technological challenges the nuclear technology domain is facing currently: (i) long-term operation of existing Generation II nuclear power plants, (ii) the design of the next generation reactors (Generation IV), (iii) the construction of the ITER fusion reactor in Cadarache (France), (iv) and the intermediate and final disposal of nuclear waste. In order to address these challenges, engineers and designers need to know the properties of a wide variety of materials under these conditions and to understand the underlying processes affecting changes in their behavior, in order to assess their performance and to determine the limits of operation. Comprehensive Nuclear Materials, Second Edition, Seven Volume Set provides broad ranging, validated summaries of all the major topics in the field of nuclear material research for fission as well as fusion reactor systems. Attention is given to the fundamental scientific aspects of nuclear materials: fuel and structural materials for fission reactors, waste materials, and materials for fusion reactors. The articles are written at a level that allows undergraduate students to understand the material, while providing active researchers with a ready reference resource of information. Most of the chapters from the first Edition have been revised and updated and a significant number of new topics are covered in completely new material. During the ten years between the two editions, the challenge for applications of nuclear materials has been significantly impacted by world events, public awareness, and technological innovation. Materials play a key role as enablers of new technologies, and we trust that this new edition of Comprehensive Nuclear Materials has captured the key recent developments. Critically reviews the major classes and functions of materials, supporting the selection, assessment, validation and engineering of materials in extreme nuclear environments Comprehensive resource for up-to-date and authoritative information which is not always available elsewhere, even in journals Provides an in-depth treatment of materials modeling and simulation, with a specific focus on nuclear issues Serves as an excellent entry point for students and researchers new to the field




Energy, Waste and the Environment


Book Description

This book provides incentives for further development of sustainable fuel cycles through a novel and interdisciplinary approach to an Earth science-related topic. The main focus is on geochemical concepts in immobilizing, isolating or neutralizing waste derived from energy production and consumption. The book also addresses the issue of using some types of energy-derived waste as alternative raw materials. Moreover, it highlights research on how certain wastes can be used for energy production, an increasingly important aspect of modern integrated waste management strategies. The main objectives are to: (a) identify the most serious environmental problems related to various types of power generation and associated waste accumulation; (b) present strategies, based on natural analogue materials, for the immobilization of toxic and radioactive waste components through mineralogical barriers; (c) discuss modern procedures for reuse of waste or certain waste components; and (d) review the importance of geochemical modelling in describing and predicting the interaction between waste and the environment.




Gaseous Hydrogen Embrittlement of Materials in Energy Technologies


Book Description

Many modern energy systems are reliant on the production, transportation, storage, and use of gaseous hydrogen. The safety, durability, performance and economic operation of these systems is challenged by operating-cycle dependent degradation by hydrogen of otherwise high performance materials. This important two-volume work provides a comprehensive and authoritative overview of the latest research into managing hydrogen embrittlement in energy technologies.Volume 1 is divided into three parts, the first of which provides an overview of the hydrogen embrittlement problem in specific technologies including petrochemical refining, automotive hydrogen tanks, nuclear waste disposal and power systems, and H2 storage and distribution facilities. Part two then examines modern methods of characterization and analysis of hydrogen damage and part three focuses on the hydrogen degradation of various alloy classesWith its distinguished editors and international team of expert contributors, Volume 1 of Gaseous hydrogen embrittlement of materials in energy technologies is an invaluable reference tool for engineers, designers, materials scientists, and solid mechanicians working with safety-critical components fabricated from high performance materials required to operate in severe environments based on hydrogen. Impacted technologies include aerospace, petrochemical refining, gas transmission, power generation and transportation. - Summarises the wealth of recent research on understanding and dealing with the safety, durability, performance and economic operation of using gaseous hydrogen at high pressure - Reviews how hydrogen embrittlement affects particular sectors such as the petrochemicals, automotive and nuclear industries - Discusses how hydrogen embrittlement can be characterised and its effects on particular alloy classes