Scientific Issues in Fuel Behaviour


Book Description

Dated January 1995







The Distributional Implications of the Impact of Fuel Price Increases on Inflation


Book Description

This paper investigates the response of consumer price inflation to changes in domestic fuel prices, looking at the different categories of the overall consumer price index (CPI). We then combine household survey data with the CPI components to construct a CPI index for the poorest and richest income quintiles with the view to assess the distributional impact of the pass-through. To undertake this analysis, the paper provides an update to the Global Monthly Retail Fuel Price Database, expanding the product coverage to premium and regular fuels, the time dimension to December 2020, and the sample to 190 countries. Three key findings stand out. First, the response of inflation to gasoline price shocks is smaller, but more persistent and broad-based in developing economies than in advanced economies. Second, we show that past studies using crude oil prices instead of retail fuel prices to estimate the pass-through to inflation significantly underestimate it. Third, while the purchasing power of all households declines as fuel prices increase, the distributional impact is progressive. But the progressivity phases out within 6 months after the shock in advanced economies, whereas it persists beyond a year in developing countries.




Grassfires


Book Description

Grassfirespresents the latest information from CSIRO on the behavior and spread of fires in grasslands. This second edition follows ten years of research aimed at improving the understanding of fundamental processes involved in the behavior of bushfires and grassfires. The book has been extensively revised and new case studies have been added to reflect the latest findings in research and investigations. The book covers all aspects of fire behavior and spread in the major types of grasses in Australia. It examines the factors that affect fire behavior in continuous grassy fuels; fire in spinifex fuels; the effect of weather and topography on fire spread; wildfire suppression strategies; and how to reconstruct grassfire spread after the fact. The three fire-spread meters designed by CSIRO and used for the prediction of fire danger and rate of spread of grassfires are explained and their use and limitations discussed. This new edition expands on the historical view of grassfires with respect to extensive Aboriginal burning, combustion chemistry, flame structure and temperature, spotting and spread in discontinuous/eaten out fuels, and the effect of wind in complex terrain. The case studies in the chapter "Wildfires and Their Suppression" have been updated and include the major wild grassfire events of recent years, the January 2003 ACT fires and the 2005 Wangary, SA fire. The "Myths, Facts and Fallacies" chapter includes new myths and a new section on personal safety during a wild grass fire. Of interest to all rural fire fighters and rural landholders, students and teachers of courses on landscape and ecological processes, rural and peri-urban dwellers, fire authorities and researchers.




Fire Science


Book Description

This textbook provides students and academics with a conceptual understanding of fire behavior and fire effects on people and ecosystems to support effective integrated fire management. Through case studies, interactive spreadsheets programmed with equations and graphics, and clear explanations, the book provides undergraduate, graduate, and professional readers with a straightforward learning path. The authors draw from years of experience in successfully teaching fundamental concepts and applications, synthesizing cutting-edge science, and applying lessons learned from fire practitioners. We discuss fire as part of environmental and human health. Our process-based, comprehensive, and quantitative approach encompasses combustion and heat transfer, and fire effects on people, plants, soils, and animals in forest, grassland, and woodland ecosystems from around the Earth. Case studies and examples link fundamental concepts to local, landscape, and global fire implications, including social-ecological systems. Globally, fire science and integrated fire management have made major strides in the last few decades. Society faces numerous fire-related challenges, including the increasing occurrence of large fires that threaten people and property, smoke that poses a health hazard, and lengthening fire seasons worldwide. Fires are useful to suppress fires, conserve wildlife and habitat, enhance livestock grazing, manage fuels, and in ecological restoration. Understanding fire science is critical to forecasting the implication of global change for fires and their effects. Increasing the positive effects of fire (fuels reduction, enhanced habitat for many plants and animals, ecosystem services increased) while reducing the negative impacts of fires (loss of human lives, smoke and carbon emissions that threaten health, etc.) is part of making fires good servants rather than bad masters.







Biomass combustion science, technology and engineering


Book Description

Biomass-fired steam boilers are finding increasing use in industrial-scale applications for both heat and power generation. This chapter compares the main technologies for biomass combustion – spreader stoker, mass burn and biomass bubbling fluidised bed (BFB)/circulating fluidised bed (CFB) – and discusses specific issues to be addressed in the design of biomass-fired steam boiler plants. Examples of recent biomass-to-energy plants are given in order to illustrate how project-specific factors influenced the design. A section is dedicated to non-wood biomass fuels and how their characteristics affect plant design. Conversion of existing coal-fired boilers to biomass firing is also discussed. The final part of the chapter deals with operational issues of biomass-fired plants.










Nuclear Corrosion Science and Engineering


Book Description

Corrosion of nuclear materials, i.e. the interaction between these materials and their environments, is a major issue for plant safety as well as for operation and economic competitiveness. Understanding these corrosion mechanisms, the systems and materials they affect, and the methods to accurately measure their incidence is of critical importance to the nuclear industry. Combining assessment techniques and analytical models into this understanding allows operators to predict the service life of corrosion-affected nuclear plant materials, and to apply the most appropriate maintenance and mitigation options to ensure safe long term operation.This book critically reviews the fundamental corrosion mechanisms that affect nuclear power plants and facilities. Initial sections introduce the complex field of nuclear corrosion science, with detailed chapters on the different types of both aqueous and non aqueous corrosion mechanisms and the nuclear materials susceptible to attack from them. This is complemented by reviews of monitoring and control methodologies, as well as modelling and lifetime prediction approaches. Given that corrosion is an applied science, the final sections review corrosion issues across the range of current and next-generation nuclear reactors, and across such nuclear applications as fuel reprocessing facilities, radioactive waste storage and geological disposal systems.With its distinguished editor and international team of expert contributors, Nuclear corrosion science and engineering is an invaluable reference for nuclear metallurgists, materials scientists and engineers, as well as nuclear facility operators, regulators and consultants, and researchers and academics in this field. - Comprehensively reviews the fundamental corrosion mechanisms that affect nuclear power plants and facilities - Chapters assess different types of both aqueous and non aqueous corrosion mechanisms and the nuclear materials susceptible to attack from them - Considers monitoring and control methodologies, as well as modelling and lifetime prediction approaches