Science as Practice and Culture


Book Description

Science as Practice and Culture explores one of the newest and most controversial developments within the rapidly changing field of science studies: the move toward studying scientific practice—the work of doing science—and the associated move toward studying scientific culture, understood as the field of resources that practice operates in and on. Andrew Pickering has invited leading historians, philosophers, sociologists, and anthropologists of science to prepare original essays for this volume. The essays range over the physical and biological sciences and mathematics, and are divided into two parts. In part I, the contributors map out a coherent set of perspectives on scientific practice and culture, and relate their analyses to central topics in the philosophy of science such as realism, relativism, and incommensurability. The essays in part II seek to delineate the study of science as practice in arguments across its borders with the sociology of scientific knowledge, social epistemology, and reflexive ethnography.




Scientific Knowledge as a Culture


Book Description

This book, in its first part, contains units of conceptual history of several topics of physics based on the research in physics education and research based articles with regard to several topics involved in teaching science in general and physics in particular. The second part of the book includes the framework used, the approach considering science knowledge as a special type of culture – discipline-culture. Within this approach, scientific knowledge is considered as comprised of a few inclusive fundamental theories each hierarchically structured in a triadic pattern: nucleus-body-periphery. While nucleus incorporates the basic principles and body comprises their implementations in the variety of laws, models, and experiments, periphery includes concepts at odds to the nucleus. This structure introduces knowledge in its conceptual variation thus converting disciplinary knowledge to cultural-disciplinary one. The approach draws on history and philosophy of science (HPS) necessary for meaningful learning of science. It is exemplified in several aspects regarding teaching physics, presenting history in classes, considering the special nature of science, and using artistic images in regular teaching. The revealed conceptual debate around the chosen topics clarifies the subject matter for school students and teachers encouraging construction of Cultural Content Knowledge. Often missed in teachers' preparation and common curriculum it helps genuine understanding of science thus providing remedy of students' misconceptions reported in educational research.




Putting Science in Its Place


Book Description

We are accustomed to thinking of science and its findings as universal. After all, one atom of carbon plus two of oxygen yields carbon dioxide in Amazonia as well as in Alaska; a scientist in Bombay can use the same materials and techniques to challenge the work of a scientist in New York; and of course the laws of gravity apply worldwide. Why, then, should the spaces where science is done matter at all? David N. Livingstone here puts that question to the test with his fascinating study of how science bears the marks of its place of production. Putting Science in Its Place establishes the fundamental importance of geography in both the generation and the consumption of scientific knowledge, using historical examples of the many places where science has been practiced. Livingstone first turns his attention to some of the specific sites where science has been made—the laboratory, museum, and botanical garden, to name some of the more conventional locales, but also places like the coffeehouse and cathedral, ship's deck and asylum, even the human body itself. In each case, he reveals just how the space of inquiry has conditioned the investigations carried out there. He then describes how, on a regional scale, provincial cultures have shaped scientific endeavor and how, in turn, scientific practices have been instrumental in forming local identities. Widening his inquiry, Livingstone points gently to the fundamental instability of scientific meaning, based on case studies of how scientific theories have been received in different locales. Putting Science in Its Place powerfully concludes by examining the remarkable mobility of science and the seemingly effortless way it moves around the globe. From the reception of Darwin in the land of the Maori to the giraffe that walked from Marseilles to Paris, Livingstone shows that place does matter, even in the world of science.




The Two Cultures


Book Description

The importance of science and technology and future of education and research are just some of the subjects discussed here.




Cultural Boundaries of Science


Book Description

This text argues that an explanation for the cultural authority of science lies where scientific claims leave laboratories and enter boardrooms and living rooms. Here, one uses "maps" to decide who to believe - cultural maps demarcating "science" from pseudoscience, ideology, faith, or nonsense.




Visual Cultures of Science


Book Description

A new collection explores the complex role of visual representation in science.




Science for the People


Book Description

For the first time, this book compiles original documents from Science for the People, the most important radical science movement in U.S. history. Between 1969 and 1989, Science for the People mobilized American scientists, teachers, and students to practice a socially and economically just science, rather than one that served militarism and corporate profits. Through research, writing, protest, and organizing, members sought to demystify scientific knowledge and embolden "the people" to take science and technology into their own hands. The movement's numerous publications were crucial to the formation of science and technology studies, challenging mainstream understandings of science as "neutral" and instead showing it as inherently political. Its members, some at prominent universities, became models for politically engaged science and scholarship by using their knowledge to challenge, rather than uphold, the social, political, and economic status quo. Highlighting Science for the People's activism and intellectual interventions in a range of areas -- including militarism, race, gender, medicine, agriculture, energy, and global affairs -- this volume offers vital contributions to today's debates on science, justice, democracy, sustainability, and political power.




The Varieties of Scientific Experience


Book Description

“Ann Druyan has unearthed a treasure. It is a treasure of reason, compassion, and scientific awe. It should be the next book you read.” —Sam Harris, author of The End of Faith “A stunningly valuable legacy left to all of us by a great human being. I miss him so.” —Kurt Vonnegut Carl Sagan's prophetic vision of the tragic resurgence of fundamentalism and the hope-filled potential of the next great development in human spirituality The late great astronomer and astrophysicist describes his personal search to understand the nature of the sacred in the vastness of the cosmos. Exhibiting a breadth of intellect nothing short of astounding, Sagan presents his views on a wide range of topics, including the likelihood of intelligent life on other planets, creationism and so-called intelligent design, and a new concept of science as "informed worship." Originally presented at the centennial celebration of the famous Gifford Lectures in Scotland in 1985 but never published, this book offers a unique encounter with one of the most remarkable minds of the twentieth century.




Making Natural Knowledge


Book Description

Arguably the best available introduction to constructivism, a research paradigm that has dominated the history of science for the past forty years, Making Natural Knowledge reflects on the importance of this theory, tells the history of its rise to prominence, and traces its most important tensions. Viewing scientific knowledge as a product of human culture, Jan Golinski challenges the traditional trajectory of the history of science as steady and autonomous progress. In exploring topics such as the social identity of the scientist, the significance of places where science is practiced, and the roles played by language, instruments, and images, Making Natural Knowledge sheds new light on the relations between science and other cultural domains. "A standard introduction to historically minded scholars interested in the constructivist programme. In fact, it has been called the 'constructivist's bible' in many a conference corridor."—Matthew Eddy, British Journal for the History of Science




Benchmarks for Science Literacy


Book Description

Published to glowing praise in 1990, Science for All Americans defined the science-literate American--describing the knowledge, skills, and attitudes all students should retain from their learning experience--and offered a series of recommendations for reforming our system of education in science, mathematics, and technology. Benchmarks for Science Literacy takes this one step further. Created in close consultation with a cross-section of American teachers, administrators, and scientists, Benchmarks elaborates on the recommendations to provide guidelines for what all students should know and be able to do in science, mathematics, and technology by the end of grades 2, 5, 8, and 12. These grade levels offer reasonable checkpoints for student progress toward science literacy, but do not suggest a rigid formula for teaching. Benchmarks is not a proposed curriculum, nor is it a plan for one: it is a tool educators can use as they design curricula that fit their student's needs and meet the goals first outlined in Science for All Americans. Far from pressing for a single educational program, Project 2061 advocates a reform strategy that will lead to more curriculum diversity than is common today. IBenchmarks emerged from the work of six diverse school-district teams who were asked to rethink the K-12 curriculum and outline alternative ways of achieving science literacy for all students. These teams based their work on published research and the continuing advice of prominent educators, as well as their own teaching experience. Focusing on the understanding and interconnection of key concepts rather than rote memorization of terms and isolated facts, Benchmarks advocates building a lasting understanding of science and related fields. In a culture increasingly pervaded by science, mathematics, and technology, science literacy require habits of mind that will enable citizens to understand the world around them, make some sense of new technologies as they emerge and grow, and deal sensibly with problems that involve evidence, numbers, patterns, logical arguments, and technology--as well as the relationship of these disciplines to the arts, humanities, and vocational sciences--making science literacy relevant to all students, regardless of their career paths. If Americans are to participate in a world shaped by modern science and mathematics, a world where technological know-how will offer the keys to economic and political stability in the twenty-first century, education in these areas must become one of the nation's highest priorities. Together with Science for All Americans, Benchmarks for Science Literacy offers a bold new agenda for the future of science education in this country, one that is certain to prepare our children for life in the twenty-first century.