Scratching of Materials and Applications


Book Description

The surface characterizations of engineering materials effects their scratch/abrasion/Mar resistance, coating adhesion/strength, and abrasive wear mechanism. Scratching of Materials and Applications has chapters devoted to direct industrial application and contains some of the important works that are being conducted. Scratch testing of materials has grown extensively since the earlier days of the Mohs Scale for ranking minerals according to their relative scratch resistance. This test has been used on metals, ceramics, glasses, polymers and coatings of various types and thicknesses.The chapters are grouped according to the type of the engineering materials used. The beginning chapters relate mostly to bulk polymers, which are followed by different types of coatings (hard wear resistant to the diamond-like carbon coatings) and finally, chapters on the application of scratching technique to metals and ceramics are included at the end of the book. Thus, the book covers a fairly wide spectrum of engineering materials which are useful to engineers and researchers.* Balances theoretical science with practical application* Demonstrates real-life applications within industry* Written experts in the fields of materials, tribology and surface mechanics




27th Annual Cocoa Beach Conference on Advanced Ceramics and Composites - B, Volume 24, Issue 4


Book Description

This volume is part of the Ceramic Engineering and Science Proceeding (CESP) series. This series contains a collection of papers dealing with issues in both traditional ceramics (i.e., glass, whitewares, refractories, and porcelain enamel) and advanced ceramics. Topics covered in the area of advanced ceramic include bioceramics, nanomaterials, composites, solid oxide fuel cells, mechanical properties and structural design, advanced ceramic coatings, ceramic armor, porous ceramics, and more.







Magnetism


Book Description

This book deals with the basic phenomena that govern the magnetic properties of matter, with magnetic materials and with the applications of magnetism in science, technology and medicine. It is the collective work of twenty-one scientists, most of them from Laboratoire Louis Neel du CNRS in Grenoble, France. The original version, in French, was edited by Etienne du Trémolet de Lacheisserie, and published in 1999. The present version involves, beyond the translation, many corrections and complements.




Recent Trends in Electrochemical Science and Technology


Book Description

This book encompasses select proceedings of NSEST-2020 and ECSIRM-2020. The volume covers advances in major areas of electrochemical science and technology and surface engineering. It covers all aspects of electrochemistry with more emphasis on corrosion. The corrosion topics include self-healing sol-gel based corrosion resistant coatings, nitric acid corrosion of stainless steel, stress corrosion cracking, etc. Few chapters are focused on electrodeposition and new materials for oxygen evolution catalysts, fuel cells and batteries. The chapters on molecularly imprinted polymer sensor for dual analytes, electrochemical sensors for lead ions and dopamine, etc., are of interest. Some papers are related to the green synthesis of nanosized oxides and superhydrophobic coatings. This book will be handy and beneficial to researchers, students, and professionals working in areas related to electrochemistry and surface engineering.




Recent Advances in Nanofabrication Techniques and Applications


Book Description

Nanotechnology has experienced a rapid growth in the past decade, largely owing to the rapid advances in nanofabrication techniques employed to fabricate nano-devices. Nanofabrication can be divided into two categories: "bottom up" approach using chemical synthesis or self assembly, and "top down" approach using nanolithography, thin film deposition and etching techniques. Both topics are covered, though with a focus on the second category. This book contains twenty nine chapters and aims to provide the fundamentals and recent advances of nanofabrication techniques, as well as its device applications. Most chapters focus on in-depth studies of a particular research field, and are thus targeted for researchers, though some chapters focus on the basics of lithographic techniques accessible for upper year undergraduate students. Divided into five parts, this book covers electron beam, focused ion beam, nanoimprint, deep and extreme UV, X-ray, scanning probe, interference, two-photon, and nanosphere lithography.




Magnetic Materials in Japan


Book Description

Please note this is a Short Discount publication. This, the third report in Elsevier's Materials Technology in Japan series, concentrates on magnetic materials as a topic gaining worldwide attention, and each chapter looks not only at current research, but also describes the technology as it is being applied and its future potential. Magnetic–related research is the second largest field of research in Japan after semiconductors, with the estimated number of researchers and engineers engaged in magnetics–related activities currently at 20,000. This research report serves as both a review of research undertaken and developments to date, and a forecast of where the industry is going.




Tribology of Polymeric Nanocomposites


Book Description

The area of tribology deals with the design, friction, wear and lubrication of interacting surfaces in relative motion. Polymer nanocomposite materials are increasingly common and offer remarkable improvements in the friction and wear properties of both bulk materials and coatings.This book gives a comprehensive description of polymeric nanocomposites, both as bulk materials and as thin surface coatings, and their behavior and potential use in tribological applications. It provides the preparation techniques, friction and wear mechanisms, properties of polymeric nanocomposites, characterization, evaluation and selection methodology. It also provides various examples of application of polymeric nanocomposites. - Provides a complete reference from the preparation to the selection of polymeric nanocomposites - Explains the theory through examples of real-world applications - More than 20 international tribology experts contribute to their area of expertise




Materials Science and Technology of Optical Fabrication


Book Description

Covers the fundamental science of grinding and polishing by examining the chemical and mechanical interactions over many scale lengths Manufacturing next generation optics has been, and will continue to be, enablers for enhancing the performance of advanced laser, imaging, and spectroscopy systems. This book reexamines the age-old field of optical fabrication from a materials-science perspective, specifically the multiple, complex interactions between the workpiece (optic), slurry, and lap. It also describes novel characterization and fabrication techniques to improve and better understand the optical fabrication process, ultimately leading to higher quality optics with higher yield. Materials Science and Technology of Optical Fabrication is divided into two major parts. The first part describes the phenomena and corresponding process parameters affecting both the grinding and polishing processes during optical fabrication. It then relates them to the critical resulting properties of the optic (surface quality, surface figure, surface roughness, and material removal rate). The second part of the book covers a number of related topics including: developed forensic tools used to increase yield of optics with respect to surface quality (scratch/dig) and fracture loss; novel characterization and fabrication techniques used to understand/quantify the fundamental phenomena described in the first part of the book; novel and recent optical fabrication processes and their connection with the fundamental interactions; and finally, special techniques utilized to fabricate optics with high damage resistance. Focuses on the fundamentals of grinding and polishing, from a materials science viewpoint, by studying the chemical and mechanical interactions/phenomena over many scale lengths between the workpiece, slurry, and lap Explains how these phenomena affect the major characteristics of the optic workpiece—namely surface figure, surface quality, surface roughness, and material removal rate Describes methods to improve the major characteristics of the workpiece as well as improve process yield, such as through fractography and scratch forensics Covers novel characterization and fabrication techniques used to understand and quantify the fundamental phenomena of various aspects of the workpiece or fabrication process Details novel and recent optical fabrication processes and their connection with the fundamental interactions Materials Science and Technology of Optical Fabrication is an excellent guidebook for process engineers, fabrication engineers, manufacturing engineers, optical scientists, and opticians in the optical fabrication industry. It will also be helpful for students studying material science and applied optics/photonics.




Self-healing Materials


Book Description

The book covers self-healing concepts for all important material classes and their applications: polymers, ceramics, non-metallic and metallic coatings, alloys, nanocomposites, concretes and cements, as well as ionomers. Beginning with the inspiration from biological self-healing, its mimickry and conceptual transfer into approaches for the self-repair of artificially created materials, this book explains the strategies and mechanisms for the readers' basic understanding, then covers the different material classes and suitable self-healing concepts, giving examples for their application in practical situations. As the first book in this swiftly growing research field, it is of great interest to readers from many scientific and engineering disciplines, such as physics and chemistry, civil, architectural, mechanical, electronics and aerospace engineering.