Transportation Systems Analysis


Book Description

"This book provides a rigorous and comprehensive coverage of transportation models and planning methods and is a must-have to anyone in the transportation community, including students, teachers, and practitioners." Moshe Ben-Akiva, Massachusetts Institute of Technology.




Discrete Choice Analysis


Book Description

Discrete Choice Analysis presents these results in such a way that they are fully accessible to the range of students and professionals who are involved in modelling demand and consumer behavior in general or specifically in transportation - whether from the point of view of the design of transit systems, urban and transport economics, public policy, operations research, or systems management and planning. The methods of discrete choice analysis and their applications in the modelling of transportation systems constitute a comparatively new field that has largely evolved over the past 15 years. Since its inception, however, the field has developed rapidly, and this is the first text and reference work to cover the material systematically, bringing together the scattered and often inaccessible results for graduate students and professionals. Discrete Choice Analysis presents these results in such a way that they are fully accessible to the range of students and professionals who are involved in modelling demand and consumer behavior in general or specifically in transportation - whether from the point of view of the design of transit systems, urban and transport economics, public policy, operations research, or systems management and planning. The introductory chapter presents the background of discrete choice analysis and context of transportation demand forecasting. Subsequent chapters cover, among other topics, the theories of individual choice behavior, binary and multinomial choice models, aggregate forecasting techniques, estimation methods, tests used in the process of model development, sampling theory, the nested-logit model, and systems of models. Discrete Choice Analysis is ninth in the MIT Press Series in Transportation Studies, edited by Marvin Manheim.




Fundamentals of Transportation Systems Analysis


Book Description

Transportation systems analysis is a multidisciplinary field which draws on engineering, economics, operations research, political science, psychology, management, and other disciplines. The major text synthesizes from these fields an approach that is intellectually coherent and comprehensive. Numerous details are provided to indicate how major concepts can be applied in practice to particular modes and problems. But the major objective of this book is to provide the reader with a basic framework onto which many different areas of specialization can be added by later coursework and practical experience. Fundamentals of Transportation Systems Analysis identifies concepts that are truly fundamental to serious work in the planning, design, or management of transportation systems. It also emphasizes, through more detailed treatment, certain topics, such as transportation demand and performance and the processes of evaluation and choice, that are inadequately treated in the available literature. A unique feature of the book is its emphasis on multimodal solutions to transportation problems. The student is taught to view the transportation system as a unified whole and to evaluate it within the context of the overall social, economic, and political system of a given region. According to Professor Manheim, "The challenge of transportation systems analysis is to intervene, delicately and deliberately, in the complex fabric of a society to use transport effectively, in coordination with other public and private actions, to achieve the goals of that society."




Logistics Transportation Systems


Book Description

Logistics Transportation Systems compiles multiple topics on transportation logistics systems from both qualitative and quantitative perspectives, providing detailed examples of real-world logistics workflows. It explores the key concepts and problem-solving techniques required by researchers and logistics professionals to effectively manage the continued expansion of logistics transportation systems, which is expected to reach an estimated 25 billion tons in the United States alone by 2045. This book provides an ample understanding of logistics transportation systems, including basic concepts, in-depth modeling analysis, and network analysis for researchers and practitioners. In addition, it covers policy issues related to transportation logistics, such as security, rules and regulations, and emerging issues including reshoring. This book is an ideal guide for academic researchers and both undergraduate and graduate students in transportation modeling, supply chains, planning, and systems. It is also useful to transportation practitioners involved in planning, feasibility studies, consultation and policy for transportation systems, logistics, and infrastructure. - Provides real-world examples of logistics systems solutions for multiple transportation modes, including seaports, rail, barge, road, pipelines, and airports - Covers a wide range of business aspects, including customer service, cost, and decision analysis - Features key-term definitions, concept overviews, discussions, and analytical problem-solving




Data Analytics for Intelligent Transportation Systems


Book Description

Data Analytics for Intelligent Transportation Systems provides in-depth coverage of data-enabled methods for analyzing intelligent transportation systems (ITS), including the tools needed to implement these methods using big data analytics and other computing techniques. The book examines the major characteristics of connected transportation systems, along with the fundamental concepts of how to analyze the data they produce. It explores collecting, archiving, processing, and distributing the data, designing data infrastructures, data management and delivery systems, and the required hardware and software technologies. It presents extensive coverage of existing and forthcoming intelligent transportation systems and data analytics technologies. All fundamentals/concepts presented in this book are explained in the context of ITS. Users will learn everything from the basics of different ITS data types and characteristics to how to evaluate alternative data analytics for different ITS applications. They will discover how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications, along with key safety and environmental applications for both commercial and passenger vehicles, data privacy and security issues, and the role of social media data in traffic planning. Data Analytics for Intelligent Transportation Systems will prepare an educated ITS workforce and tool builders to make the vision for safe, reliable, and environmentally sustainable intelligent transportation systems a reality. It serves as a primary or supplemental textbook for upper-level undergraduate and graduate ITS courses and a valuable reference for ITS practitioners. - Utilizes real ITS examples to facilitate a quicker grasp of materials presented - Contains contributors from both leading academic and commercial domains - Explains how to design effective data visualizations, tactics on the planning process, and how to evaluate alternative data analytics for different connected transportation applications - Includes exercise problems in each chapter to help readers apply and master the learned fundamentals, concepts, and techniques - New to the second edition: Two new chapters on Quantum Computing in Data Analytics and Society and Environment in ITS Data Analytics




Advanced Transport Systems


Book Description

This book provides a systematic analysis, modeling and evaluation of the performance of advanced transport systems. It offers an innovative approach by presenting a multidimensional examination of the performance of advanced transport systems and transport modes, useful for both theoretical and practical purposes. Advanced transport systems for the twenty-first century are characterized by the superiority of one or several of their infrastructural, technical/technological, operational, economic, environmental, social and policy performances as compared to their conventional counterparts. The advanced transport systems considered include: Bus Rapid Transit (BRT) and Personal Rapid Transit (PRT) systems in urban area(s), electric and fuel cell passenger cars, high speed tilting trains, High Speed Rail (HSR), Trans Rapid Maglev (TRM), Evacuated Tube Transport system (ETT), advanced commercial subsonic and Supersonic Transport Aircraft (STA), conventionally- and Liquid Hydrogen (LH2)-fuelled commercial air transportation, advanced Air Traffic Control (ATC) technologies and procedures for increasing the airport runway capacity, Underground Freight Transport (UFT) systems in urban area(s), Long Intermodal Freight Train(s) (LIFTs), road mega trucks, large advanced container ships and freight/cargo aircraft and advanced freight/goods collection distribution networks. This book is intended for postgraduates, researchers, professionals and policy makers working in the transport industry.










Urban Economics and Planning


Book Description




Computation and Big Data for Transport


Book Description

This book gathers the outcomes of the second ECCOMAS CM3 Conference series on transport, which addressed the main challenges and opportunities that computation and big data represent for transport and mobility in the automotive, logistics, aeronautics and marine-maritime fields. Through a series of plenary lectures and mini-forums with lectures followed by question-and-answer sessions, the conference explored potential solutions and innovations to improve transport and mobility in surface and air applications. The book seeks to answer the question of how computational research in transport can provide innovative solutions to Green Transportation challenges identified in the ambitious Horizon 2020 program. In particular, the respective papers present the state of the art in transport modeling, simulation and optimization in the fields of maritime, aeronautics, automotive and logistics research. In addition, the content includes two white papers on transport challenges and prospects. Given its scope, the book will be of interest to students, researchers, engineers and practitioners whose work involves the implementation of Intelligent Transport Systems (ITS) software for the optimal use of roads, including safety and security, traffic and travel data, surface and air traffic management, and freight logistics.