Search for the Decay K_L → π^0\nu\bar{\nu} at the J-PARC KOTO Experiment


Book Description

This book reports on a new result from the KL→π0νν search at the J-PARC KOTO experiment, which sets an upper limit of 3×10-9 for the branching fraction of the decay at the 90% confidence level, improving the previous best limit by an order of magnitude. To explain the matter–antimatter asymmetry in the universe, still unknown new physics beyond the standard model (SM) that breaks CP symmetry is necessary. The rare decay of a long-lived neutral K meson, KL→π0νν, is a CP-violating decay. It is an excellent probe to search for new physics because new physics can contribute to the decay and change its branching fraction, while the SM is as small as 3×10-11. However, it is extremely difficult to search for because all of the decay products are neutral and two neutrinos are undetectable. The KL→π0νν signal is identified by measuring two photons from a π0 with a calorimeter and confirming the absence of any other detectable particles with hermetic veto counters. The book contributes to the analysis of neutron-induced backgrounds which were the dominant background sources in the search. For the background caused by two consecutive hadronic showers in the calorimeter due to a neutron, the author evaluated the background yield using a data-driven approach. For another background caused by an η meson production—η decays two photons—by a neutron that hits a veto counter near the calorimeter, the author developed an original analysis technique to reduce it. The book also contributes to the analysis of the normalization modes (KL→3π0, KL→2π0, KL→2γ) to measure KL yield, the estimation of the signal acceptance based on a simulation, and the evaluation of the trigger efficiency. As a result, significant improvements in the measurement were achieved, and this is an important step in the continuing higher sensitivity search, which can reach new physics with the energy scales up to O(100-1000 TeV).







Searches for CP Violation in Charmed Meson Decays


Book Description

Our current understanding of the fundamental building blocks of the Universe, summarised by the Standard Model of particle physics, is incomplete. For example, it fails to explain why we do not see equal, or almost equal, numbers of particles and their antiparticle partners. To explain this asymmetry requires, among other effects, a mechanism known as charge-parity (CP) violation that causes differences between the rates at which particles and antiparticles decay. CP violation is seen in systems containing bottom and strange quarks, but not in those with up, charm or top quarks. This thesis describes searches for particle-antiparticle asymmetries in the decay rates of charmed mesons. No evidence of CP violation is found. With current sensitivities, an asymmetry large enough to observe probably could not be explained by the Standard Model. Instead an explanation could come from new physics, for example contributions from supersymmetric or other undiscovered heavy particles. In the thesis, the development of new techniques to search for these asymmetries is described. They are applied to data from the LHCb experiment at CERN to make precise measurements of asymmetries in the D^+->K^-K^+pi^+ decay channel. This is the most promising charged D decay for CP violation searches.










Observation of a New State in the Search for the Higgs Boson at CMS


Book Description

This book describes the searches that lead to the discovery of a Higgs boson performed at CMS, one of the two main experiments at the CERN LHC. After an overview of the theory and of the CMS experiment, all search channels are described, with emphasis on the ones with the best sensitivity. The statistical methodology used to analyse and the outcomes of the searches and the discovery results are then presented in detail.




Energy Research Abstracts


Book Description

Semiannual, with semiannual and annual indexes. References to all scientific and technical literature coming from DOE, its laboratories, energy centers, and contractors. Includes all works deriving from DOE, other related government-sponsored information, and foreign nonnuclear information. Arranged under 39 categories, e.g., Biomedical sciences, basic studies; Biomedical sciences, applied studies; Health and safety; and Fusion energy. Entry gives bibliographical information and abstract. Corporate, author, subject, report number indexes.




Testing Explanations of Short Baseline Neutrino Anomalies


Book Description

This thesis, encompassing both theory to experiment, guides the reader in a pedagogical way through the author’s attempts to resolve the mystery of the so-called MiniBooNE anomaly, where unexpected neutrino oscillations were reported, potentially explainable by the existence of light sterile neutrinos, but in contradiction with several null results. Within this context, this thesis reports one of the first analyses searching for an excess of electrons in the MicroBooNE experiment finding no excess of events and narrowing down the possible explanations for the anomaly. Additionally, this thesis explores non-minimal heavy neutral leptons as potential explanations for the MiniBooNE excess. To search for evidence for this particle, the author performs an analysis using data from the T2K experiment, which searched for pairs of electrons using a gas argon time projection. This thesis provides a comprehensive explanation of the MiniBooNE anomaly and test of its possibile explanation with liquid and gas time projection chambers.




Higgs Particle(s)


Book Description

The proceedings of the July 1989 Workshop contribute to the ongoing scientific debate on the best strategies of discovering the Higgs boson (and top quark). The papers are organized in five parts, covering theoretical issues, searches for light scalars, Higgs searches in hadronic collisions, Higgs searches in e +e -annihilation, and present experim




The Higgs Hunter's Guide


Book Description

The Higgs Hunter's Guide is a definitive and comprehensive guide to the physics of Higgs bosons. In particular, it discusses the extended Higgs sectors required by those recent theoretical approaches that go beyond the Standard Model, including supersymmetry and superstring-inspired models.