Search Techniques in Intelligent Classification Systems


Book Description

A unified methodology for categorizing various complex objects is presented in this book. Through probability theory, novel asymptotically minimax criteria suitable for practical applications in imaging and data analysis are examined including the special cases such as the Jensen-Shannon divergence and the probabilistic neural network. An optimal approximate nearest neighbor search algorithm, which allows faster classification of databases is featured. Rough set theory, sequential analysis and granular computing are used to improve performance of the hierarchical classifiers. Practical examples in face identification (including deep neural networks), isolated commands recognition in voice control system and classification of visemes captured by the Kinect depth camera are included. This approach creates fast and accurate search procedures by using exact probability densities of applied dissimilarity measures. This book can be used as a guide for independent study and as supplementary material for a technically oriented graduate course in intelligent systems and data mining. Students and researchers interested in the theoretical and practical aspects of intelligent classification systems will find answers to: - Why conventional implementation of the naive Bayesian approach does not work well in image classification? - How to deal with insufficient performance of hierarchical classification systems? - Is it possible to prevent an exhaustive search of the nearest neighbor in a database?




Intelligent Optimisation Techniques


Book Description

This work gives a concise introduction to four important optimization techniques, presenting a range of applications drawn from electrical, manufacturing, mechanical, and systems engineering-such as the design of microstrip antennas, digital FIR filters, and fuzzy logic controllers. The book also contains the C programs used to implement the main techniques for those wishing to experiment with them.




Classification and Learning Using Genetic Algorithms


Book Description

This book provides a unified framework that describes how genetic learning can be used to design pattern recognition and learning systems. It examines how a search technique, the genetic algorithm, can be used for pattern classification mainly through approximating decision boundaries. Coverage also demonstrates the effectiveness of the genetic classifiers vis-à-vis several widely used classifiers, including neural networks.




Recent Trends in Computational Intelligence Enabled Research


Book Description

The field of computational intelligence has grown tremendously over that past five years, thanks to evolving soft computing and artificial intelligent methodologies, tools and techniques for envisaging the essence of intelligence embedded in real life observations. Consequently, scientists have been able to explain and understand real life processes and practices which previously often remain unexplored by virtue of their underlying imprecision, uncertainties and redundancies, and the unavailability of appropriate methods for describing the incompleteness and vagueness of information represented. With the advent of the field of computational intelligence, researchers are now able to explore and unearth the intelligence, otherwise insurmountable, embedded in the systems under consideration. Computational Intelligence is now not limited to only specific computational fields, it has made inroads in signal processing, smart manufacturing, predictive control, robot navigation, smart cities, and sensor design to name a few. Recent Trends in Computational Intelligence Enabled Research: Theoretical Foundations and Applications explores the use of this computational paradigm across a wide range of applied domains which handle meaningful information. Chapters investigate a broad spectrum of the applications of computational intelligence across different platforms and disciplines, expanding our knowledge base of various research initiatives in this direction. This volume aims to bring together researchers, engineers, developers and practitioners from academia and industry working in all major areas and interdisciplinary areas of computational intelligence, communication systems, computer networks, and soft computing. - Provides insights into the theory, algorithms, implementation, and application of computational intelligence techniques - Covers a wide range of applications of deep learning across various domains which are researching the applications of computational intelligence - Investigates novel techniques and reviews the state-of-the-art in the areas of machine learning, computer vision, soft computing techniques




Technologies and Applications of Artificial Intelligence


Book Description

This book constitutes the refereed proceedings of the 19th International Conference on Technologies and Applications of Artificial Intelligence, held in Taipei, Taiwan, in November 2014. The 23 revised full papers, 3 short papers, and 8 workshop papers presented at the international track of the conference were carefully reviewed and selected from overall 93 submissions to the international track, domestic track, and international workshops for inclusion in this volume. The papers feature original research results and practical development experiences among researchers and application developers from the many AI related areas including machine learning, data mining, statistics, computer vision, web intelligence, information retrieval, and computer games.




Algorithms in Advanced Artificial Intelligence


Book Description

The most common form of severe dementia, Alzheimer’s disease (AD), is a cumulative neurological disorder because of the degradation and death of nerve cells in the brain tissue, intelligence steadily declines and most of its activities are compromised in AD. Before diving into the level of AD diagnosis, it is essential to highlight the fundamental differences between conventional machine learning (ML) and deep learning (DL). This work covers a number of photo-preprocessing approaches that aid in learning because image processing is essential for the diagnosis of AD. The most crucial kind of neural network for computer vision used in medical image processing is called a Convolutional Neural Network (CNN). The proposed study will consider facial characteristics, including expressions and eye movements using the diffusion model, as part of CNN’s meticulous approach to Alzheimer’s diagnosis. Convolutional neural networks were used in an effort to sense Alzheimer’s disease in its early stages using a big collection of pictures of facial expressions.







Advances in Swarm Intelligence, Part II


Book Description

The two-volume set (LNCS 6728 and 6729) constitutes the refereed proceedings of the International Conference on Swarm Intelligence, ICSI 2011, held in Chongqing, China, in June 2011. The 143 revised full papers presented were carefully reviewed and selected from 298 submissions. The papers are organized in topical sections on theoretical analysis of swarm intelligence algorithms, particle swarm optimization, applications of pso algorithms, ant colony optimization algorithms, bee colony algorithms, novel swarm-based optimization algorithms, artificial immune system, differential evolution, neural networks, genetic algorithms, evolutionary computation, fuzzy methods, and hybrid algorithms - for part I. Topics addressed in part II are such as multi-objective optimization algorithms, multi-robot, swarm-robot, and multi-agent systems, data mining methods, machine learning methods, feature selection algorithms, pattern recognition methods, intelligent control, other optimization algorithms and applications, data fusion and swarm intelligence, as well as fish school search - foundations and applications.







Artificial Intelligence Paradigms for Smart Cyber-Physical Systems


Book Description

Cyber-physical systems (CPS) have emerged as a unifying name for systems where cyber parts (i.e., the computing and communication parts) and physical parts are tightly integrated, both in design and during operation. Such systems use computations and communication deeply embedded in and interacting with human physical processes as well as augmenting existing and adding new capabilities. As such, CPS is an integration of computation, networking, and physical processes. Embedded computers and networks monitor and control the physical processes, with feedback loops where physical processes affect computations and vice versa. The economic and societal potential of such systems is vastly greater than what has been realized, and major investments are being made worldwide to develop the technology. Artificial Intelligence Paradigms for Smart Cyber-Physical Systems focuses on the recent advances in Artificial intelligence-based approaches towards affecting secure cyber-physical systems. This book presents investigations on state-of-the-art research issues, applications, and achievements in the field of computational intelligence paradigms for CPS. Covering topics that include autonomous systems, access control, machine learning, and intrusion detection and prevention systems, this book is ideally designed for engineers, industry professionals, practitioners, scientists, managers, students, academicians, and researchers seeking current research on artificial intelligence and cyber-physical systems.