Second Law Analysis of Premixed Compression Ignition Combustion in a Diesel Engine Using a Thermodynamic Engine Cycle Simulation


Book Description

A second law analysis of compression ignition engine was completed using a thermodynamic engine cycle simulation. The major components of availability destruction and transfer for an entire engine cycle were identified and the influence of mode of combustion, injection timing and EGR on availability balance was evaluated. The simulation pressure data was matched with the available experimental pressure data gathered from the tests on the Isuzu 1.7 L direct injection diesel engine. Various input parameters of the simulation were changed to represent actual engine conditions. Availability destruction due to combustion decreases with advanced injection timing and under premixed compression ignition (PCI) modes; but it is found to be insensitive to the level of EGR. Similarly, trends (or lack of trends) in the other components of availability balance were identified for variation in injection timing, EGR level and mode of combustion. Optimum strategy for efficient combustion processes was proposed based on the observed trends.




Novel Internal Combustion Engine Technologies for Performance Improvement and Emission Reduction


Book Description

This monograph covers different aspects of internal combustion engines including engine performance and emissions and presents various solutions to resolve these issues. The contents provide examples of utilization of methanol as a fuel for CI engines in different modes of transportation, such as railroad, personal vehicles or heavy duty road transportation. The volume provides information about the current methanol utilization and its potential, its effect on the engine in terms of efficiency, combustion, performance, pollutants formation and prediction. The contents are also based on review of technologies present, the status of different combustion and emission control technologies and their suitability for different types of IC engines. Few novel technologies for spark ignition (SI) engines have been also included in this book, which makes this book a complete solution for both kind of engines. This book will be useful for engine researchers, energy experts and students involved in fuels, IC engines, engine instrumentation and environmental research.




Thermal Energy


Book Description

The book details sources of thermal energy, methods of capture, and applications. It describes the basics of thermal energy, including measuring thermal energy, laws of thermodynamics that govern its use and transformation, modes of thermal energy, conventional processes, devices and materials, and the methods by which it is transferred. It covers 8 sources of thermal energy: combustion, fusion (solar) fission (nuclear), geothermal, microwave, plasma, waste heat, and thermal energy storage. In each case, the methods of production and capture and its uses are described in detail. It also discusses novel processes and devices used to improve transfer and transformation processes.







Simulation and Optimization of Internal Combustion Engines


Book Description

Simulation and Optimization of Internal Combustion Engines provides the fundamentals and up-to-date progress in multidimensional simulation and optimization of internal combustion engines. While it is impossible to include all the models in a single book, this book intends to introduce the pioneer and/or the often-used models and the physics behind them providing readers with ready-to-use knowledge. Key issues, useful modeling methodology and techniques, as well as instructive results, are discussed through examples. Readers will understand the fundamentals of these examples and be inspired to explore new ideas and means for better solutions in their studies and work. Topics include combustion basis of IC engines, mathematical descriptions of reactive flow with sprays, engine in-cylinder turbulence, fuel sprays, combustions and pollutant emissions, optimization of direct-injection gasoline engines, and optimization of diesel and alternative fuel engines.




Internal Combustion Engine Fundamentals


Book Description

This text, by a leading authority in the field, presents a fundamental and factual development of the science and engineering underlying the design of combustion engines and turbines. An extensive illustration program supports the concepts and theories discussed.




Fossil Energy


Book Description

The word sustainability shares its root with sustenance. In the context of modern society, sustenance is inextricably linked to the use of energy. Fossil Energy provides an authoritative reference on all aspects of this key resource, which currently represents nearly 85% of global energy consumption. Gathering 16 peer-reviewed entries from the Encyclopedia of Sustainability Science and Technology, the chapters provide comprehensive, yet concise coverage of fundamentals and current areas of research. Written by recognized authorities in the field, this volume represents an essential resource for scientists and engineers working on the development of energy resources, fossil or alternative, and reflects the essential role of energy supplies in supporting a sustainable future.







Technical Literature Abstracts


Book Description