Second Order Elliptic Integro-Differential Problems


Book Description

The Green function has played a key role in the analytical approach that in recent years has led to important developments in the study of stochastic processes with jumps. In this Research Note, the authors-both regarded as leading experts in the field- collect several useful results derived from the construction of the Green function and its estim




Second Order Elliptic Integro-differential Problems


Book Description

This title offers a systematic presentation of the properties and applications of elliptic integro-differential operators. It also includes three chapters of information that present key results and background in integro-differential operators and equations.




Integro-Differential Elliptic Equations


Book Description

Zusammenfassung: This monograph offers a self-contained introduction to the regularity theory for integro-differential elliptic equations, mostly developed in the 21st century. This class of equations finds relevance in fields such as analysis, probability theory, mathematical physics, and in several contexts in the applied sciences. The work gives a detailed presentation of all the necessary techniques, with a primary focus on the main ideas rather than on proving all the results in their greatest generality. The basic building blocks are presented first, with the study of the square root of the Laplacian, and weak solutions to linear equations. Subsequently, the theory of viscosity solutions to nonlinear equations is developed, and proofs are provided for the main known results in this context. The analysis finishes with the investigation of obstacle problems for integro-differential operators and establishes the regularity of solutions and free boundaries. A distinctive feature of this work lies in its presentation of nearly all covered material in a monographic format for the first time, and several proofs streamline, and often simplify, those in the original papers. Furthermore, various open problems are listed throughout the chapters




Elliptic Differential Equations and Obstacle Problems


Book Description

In the few years since their appearance in the mid-sixties, variational inequalities have developed to such an extent and so thoroughly that they may now be considered an "institutional" development of the theory of differential equations (with appreciable feedback as will be shown). This book was written in the light of these considerations both in regard to the choice of topics and to their treatment. In short, roughly speaking my intention was to write a book on second-order elliptic operators, with the first half of the book, as might be expected, dedicated to function spaces and to linear theory whereas the second, nonlinear half would deal with variational inequalities and non variational obstacle problems, rather than, for example, with quasilinear or fully nonlinear equations (with a few exceptions to which I shall return later). This approach has led me to omit any mention of "physical" motivations in the wide sense of the term, in spite of their historical and continuing importance in the development of variational inequalities. I here addressed myself to a potential reader more or less aware of the significant role of variational inequalities in numerous fields of applied mathematics who could use an analytic presentation of the fundamental theory, which would be as general and self-contained as possible.




Semigroups, Boundary Value Problems and Markov Processes


Book Description

A careful and accessible exposition of functional analytic methods in stochastic analysis is provided in this book. It focuses on the interrelationship between three subjects in analysis: Markov processes, semi groups and elliptic boundary value problems. The author studies a general class of elliptic boundary value problems for second-order, Waldenfels integro-differential operators in partial differential equations and proves that this class of elliptic boundary value problems provides a general class of Feller semigroups in functional analysis. As an application, the author constructs a general class of Markov processes in probability in which a Markovian particle moves both by jumps and continuously in the state space until it 'dies' at the time when it reaches the set where the particle is definitely absorbed. Augmenting the 1st edition published in 2004, this edition includes four new chapters and eight re-worked and expanded chapters. It is amply illustrated and all chapters are rounded off with Notes and Comments where bibliographical references are primarily discussed. Thanks to the kind feedback from many readers, some errors in the first edition have been corrected. In order to keep the book up-to-date, new references have been added to the bibliography. Researchers and graduate students interested in PDEs, functional analysis and probability will find this volume useful.




Variational Analysis and Applications


Book Description

This Volume contains the (refereed) papers presented at the 38th Conference of the School of Mathematics "G.Stampacchia" of the "E.Majorana" Centre for Scientific Culture of Erice (Sicily), held in Memory ofG. Stampacchia and J.-L. Lions in the period June 20 - July 2003. The presence of participants from Countries has greatly contributed to the success of the meeting. The School of Mathematics was dedicated to Stampacchia, not only for his great mathematical achievements, but also because He founded it. The core of the Conference has been the various features of the Variational Analysis and their motivations and applications to concrete problems. Variational Analysis encompasses a large area of modem Mathematics, such as the classical Calculus of Variations, the theories of perturbation, approximation, subgradient, subderivates, set convergence and Variational Inequalities, and all these topics have been deeply and intensely dealt during the Conference. In particular, Variational Inequalities, which have been initiated by Stampacchia, inspired by Signorini Problem and the related work of G. Fichera, have offered a very great possibility of applications to several fundamental problems of Mathematical Physics, Engineering, Statistics and Economics. The pioneer work of Stampacchia and Lions can be considered as the basic kernel around which Variational Analysis is going to be outlined and constructed. The Conference has dealt with both finite and infinite dimensional analysis, showing that to carry on these two aspects disjointly is unsuitable for both.










Nonlocal Diffusion Problems


Book Description

Nonlocal diffusion problems arise in a wide variety of applications, including biology, image processing, particle systems, coagulation models, and mathematical finance. These types of problems are also of great interest for their purely mathematical content. This book presents recent results on nonlocal evolution equations with different boundary conditions, starting with the linear theory and moving to nonlinear cases, including two nonlocal models for the evolution of sandpiles. Both existence and uniqueness of solutions are considered, as well as their asymptotic behaviour. Moreover, the authors present results concerning limits of solutions of the nonlocal equations as a rescaling parameter tends to zero. With these limit procedures the most frequently used diffusion models are recovered: the heat equation, the $p$-Laplacian evolution equation, the porous media equation, the total variation flow, a convection-diffusion equation and the local models for the evolution of sandpiles due to Aronsson-Evans-Wu and Prigozhin. Readers are assumed to be familiar with the basic concepts and techniques of functional analysis and partial differential equations. The text is otherwise self-contained, with the exposition emphasizing an intuitive understanding and results given with full proofs. It is suitable for graduate students or researchers. The authors cover a subject that has received a great deal of attention in recent years. The book is intended as a reference tool for a general audience in analysis and PDEs, including mathematicians, engineers, physicists, biologists, and others interested in nonlocal diffusion problems.




Elliptic Partial Differential Equations of Second Order


Book Description

This volume is intended as an essentially self contained exposition of portions of the theory of second order quasilinear elliptic partial differential equations, with emphasis on the Dirichlet problem in bounded domains. It grew out of lecture notes for graduate courses by the authors at Stanford University, the final material extending well beyond the scope of these courses. By including preparatory chapters on topics such as potential theory and functional analysis, we have attempted to make the work accessible to a broad spectrum of readers. Above all, we hope the readers of this book will gain an appreciation of the multitude of ingenious barehanded techniques that have been developed in the study of elliptic equations and have become part of the repertoire of analysis. Many individuals have assisted us during the evolution of this work over the past several years. In particular, we are grateful for the valuable discussions with L. M. Simon and his contributions in Sections 15.4 to 15.8; for the helpful comments and corrections of J. M. Cross, A. S. Geue, J. Nash, P. Trudinger and B. Turkington; for the contributions of G. Williams in Section 10.5 and of A. S. Geue in Section 10.6; and for the impeccably typed manuscript which resulted from the dedicated efforts oflsolde Field at Stanford and Anna Zalucki at Canberra. The research of the authors connected with this volume was supported in part by the National Science Foundation.