Second Quantization-Based Methods in Quantum Chemistry


Book Description

Second Quantization-Based Methods in Quantum Chemistry presents several modern quantum chemical tools that are being applied to electronic states of atoms and molecules. Organized into six chapters, the book emphasizes the quantum chemical methods whose developments and implementations have been presented in the language of second quantization. The opening chapter of the book examines the representation of the electronic Hamiltonian, other quantum-mechanical operators, and state vectors in the second-quantization language. This chapter also describes the unitary transformations among orthonormal orbitals in an especially convenient manner. In subsequent chapters, various tools of second quantization are used to describe many approximation techniques, such as Hartree-Fock, perturbation theory, configuration interaction, multiconfigurational Hartree-Fock, cluster methods, and Green's function. This book is an invaluable source for researchers in quantum chemistry and for graduate-level students who have already taken introductory courses that cover the fundamentals of quantum mechanics through the Hartree-Fock method as applied to atoms and molecules.




Second Quantized Approach to Quantum Chemistry


Book Description

The aim of this book is to give a simple, short, and elementary introduction to the second quantized formalism as applied to a many-electron system. It is intended for those, mainly chemists, who are familiar with traditional quantum chemistry but have not yet become acquainted with second quantization. The treatment is, in part, based on a series of seminars held by the author on the subject. It has been realized that many quantum chemists either interested in theory or in applications, being educated as chemi~ts and not as physicists, have never devoted themselves to taking a course on the second quantized approach. Most available textbooks on this topic are not very easy to follow for those who are not trained in theory, or they are not detailed enough to offer a comprehensive treatment. At the same time there are several papers in quantum chemical literature which take advantage of using second quantization, and it would be worthwhile if those papers were accessible for a wider reading public. For this reason, it is intended in this survey to review the basic formalism of second quantization, and to treat some selected chapters of quantum chemistry in this language. Most derivations will be carried out in a detailed manner, so the reader need not accept gaps to understand the result.




Computational Methods in Quantum Chemistry


Book Description

An account, from first principles, of the methods of numerical quantum mechanics. Coverage encompasses formulations and fundamental postulates; the Hamiltonian and angular momentum operators; and approximation of the solutions of the Schroedinger equation




Lecture Notes in Quantum Chemistry


Book Description

"Quantum Chemistry" is the course material of a European Summer School in Quantum Chemistry, organized by Bj|rn O. Roos. It consists of lectures by outstanding scientists who participate in the education of students and young scientists. The book has a wider appeal as additional reading for University courses. Contents: P.-A. Malmquist: Mathematical Tools in Quantum Chemistry J. Olsen: The Method of Second Quantization P.R. Taylor: Molecular Symmetry and Quantum Chemistry B.O. Roos: The Multiconfigurational (MC) Self-Consistent Field (SCF) Theory P.E.M. Siegbahn: The Configuration Interaction Method T. Helgaker: Optimization of Minima and Saddle Points P.R. Taylor: Accurate Calculations and Calibration U. Wahlgren: Effective Core Potential Method




The Method of Second Quantization


Book Description

The Method of Second Quantization deals with the method of second quantization and its use to solve problems of quantum mechanics involving an indefinite number of particles, mainly in field theory and quantum statistics. Topics covered include operations on generating functionals; linear canonical transformations; quadratic operators; and Thirring's four-fermion model. State spaces and the simplest operators are also described. This book is comprised of four chapters and begins with an overview of the method of second quantization and the relevant notations. The first chapter focuses on the connections between vectors and functionals and between operators and functionals, together with fundamental rules for operating on functionals. The reader is then introduced to the so-called quadratic operators and the linear canonical transformations closely connected with them. Quadratic operators reduced and not reduced to normal form are considered. The final chapter discusses the Thirring model, the simplest relativistically invariant model in quantum field theory, and explains why it includes infinities. This monograph will be of value to students and practitioners of mathematical physics.




Modern Quantum Chemistry


Book Description

This graduate-level text explains the modern in-depth approaches to the calculation of electronic structure and the properties of molecules. Largely self-contained, it features more than 150 exercises. 1989 edition.




Brillouin-Wigner Methods for Many-Body Systems


Book Description

Brillouin-Wigner Methods for Many-Body Systems gives an introduction to many-body methods in electronic structure theory for the graduate student and post-doctoral researcher. It provides researchers in many-body physics and theoretical chemistry with an account of Brillouin-Wigner methodology as it has been developed in recent years to handle the multireference correlation problem. Moreover, the frontiers of this research field are defined. This volume is of interest to atomic and molecular physicists, physical chemists and chemical physicists, quantum chemists and condensed matter theorists, computational chemists and applied mathematicians.




Relativistic Quantum Chemistry


Book Description

"Written by two researchers in the field, this book is a reference to explain the principles and fundamentals in a self-contained, complete and consistent way. Much attention is paid to the didactical value, with the chapters interconnected and based on each other. From beginning to end, the authors deduce all the concepts and rules, such that readers are able to understand the fundamentals and principles behind the theory. Essential reading for theoretical chemists and physicists." --Book Jacket.




Simple Theorems, Proofs, and Derivations in Quantum Chemistry


Book Description

Since 1983 I have been delivering lectures at Budapest University that are mainly attended by chemistry students who have already studied quantum chem istry in the amount required by the (undergraduate) chemistry curriculum of the University, and wish to acquire deeper insight in the field, possibly in prepara tion of a master's or Ph.D. thesis in theoretical chemistry. In such a situation, I have the freedom to discuss, in detail, a limited number of topics which I feel are important for one reason or another. The exact coverage may vary from year to year, but I usually concentrate on the general principles and theorems and other basic theoretical results which I foresee will retain their importance despite the rapid development of quantum chemistry. I commonly organize my lectures by treating the subject from the begin ning, without referring explicitly to any actual previous knowledge in quantum chemistry-only some familiarity with its goals, approaches and, to a lesser ex tent, techniques is supposed. I concentrate on the formulae and their derivation, assuming the audience essentially understands the reasons for deriving these results. This book is basically derived from the material of my lectures. The spe cial feature, distinguishing it from most other textbooks, is that all results are explicitly proved or derived, and the derivations are presented completely, step by step. True understanding of a theoretical result can be achieved only if one has gone through its derivation.




Reviews in Computational Chemistry


Book Description

THIS VOLUME, WHICH IS DESIGNED FOR STAND-ALONE USE IN TEACHING AND RESEARCH, FOCUSES ON QUANTUM CHEMISTRY, AN AREA OF SCIENCE THAT MANY CONSIDER TO BE THE CENTRAL CORE OF COMPUTATIONAL CHEMISTRY. TUTORIALS AND REVIEWS COVER * HOW TO OBTAIN SIMPLE CHEMICAL INSIGHT AND CONCEPTS FROM DENSITY FUNCTIONAL THEORY CALCULATIONS, * HOW TO MODEL PHOTOCHEMICAL REACTIONS AND EXCITED STATES, AND * HOW TO COMPUTE ENTHALPIES OF FORMATION OF MOLECULES. * A FOURTH CHAPTER TRACES CANADIAN RESEARCH IN THE EVOLUTION OF COMPUTATIONAL CHEMISTRY. * ALSO INCLUDED WITH THIS VOLUME IS A SPECIAL TRIBUTE TO QCPE. FROM REVIEWS OF THE SERIES "Reviews in Computational Chemistry proves itself an invaluable resource to the computational chemist. This series has a place in every computational chemist's library."-JOURNAL OF THE AMERICAN CHEMICAL SOCIETY