Sedimentary Organic Matter


Book Description

A sound understanding of the global carbon cycle requires an appreciation of the various physico-chemical and biological processes that determine the production, distribution, deposition and diagenesis of organic matter in the natural environment. This book is a comprehensive interdisciplinary synthesis of this information, coupled with an organic facies approach based on data from both microscopy and bulk organic geochemistry.




Organic Geochemistry


Book Description

For many years, the subject matter encompassed by the title of this book was largely limited to those who were interested in the two most economically important organic materials found buried in the Earth, namely, coal and petroleum. The point of view of any discussions which might occur, either in scientific meetings or in books that have been written, was, therefore, dominated largely by these interests. A great change has occurred in the last decade. This change had as its prime mover our growing knowledge of the molecular architecture of biological systems which, in turn, gave rise to a more legitimate asking of the question: "How did life come to be on the surface of the Earth?" A second motivation arose when the possibilities for the exploration of planets other than the Earth-the moon, Mars, and other parts of the solar system-became a reality. Thus the question of the possible existence of life elsewhere than on Earth conceivably could be answered.




Petroleum Formation and Occurrence


Book Description

Current and authoritative with many advanced concepts for petroleum geologists, geochemists, geophysicists, or engineers engaged in the search for or production of crude oil and natural gas, or interested in their habitats and the factors that control them, this book is an excellent reference. It is recommended without reservation. AAPG Bulletin.







Biogeochemistry of Marine Dissolved Organic Matter


Book Description

Marine dissolved organic matter (DOM) is a complex mixture of molecules found throughout the world's oceans. It plays a key role in the export, distribution, and sequestration of carbon in the oceanic water column, posited to be a source of atmospheric climate regulation. Biogeochemistry of Marine Dissolved Organic Matter, Second Edition, focuses on the chemical constituents of DOM and its biogeochemical, biological, and ecological significance in the global ocean, and provides a single, unique source for the references, information, and informed judgments of the community of marine biogeochemists. Presented by some of the world's leading scientists, this revised edition reports on the major advances in this area and includes new chapters covering the role of DOM in ancient ocean carbon cycles, the long term stability of marine DOM, the biophysical dynamics of DOM, fluvial DOM qualities and fate, and the Mediterranean Sea. Biogeochemistry of Marine Dissolved Organic Matter, Second Edition, is an extremely useful resource that helps people interested in the largest pool of active carbon on the planet (DOC) get a firm grounding on the general paradigms and many of the relevant references on this topic. - Features up-to-date knowledge of DOM, including five new chapters - The only published work to synthesize recent research on dissolved organic carbon in the Mediterranean Sea - Includes chapters that address inputs from freshwater terrestrial DOM




Tracking Environmental Change Using Lake Sediments


Book Description

Theory Instrumentation NIR analysis of sediment samples Uses of NIRS in palaeolimnology Future perspectives Summary References Fly-ash particles. Neil Rose 319 12. Introduction A brief history Methods of extraction and enumeration Temporal distribution Spatial distribution Source apportionment The future Summary Acknowledgements References Part III: Stable Isotope Techniques 13. Application of stable isotope techniques to inorganic and biogenic carbonates. Emi Ito 351 Introduction Nomenclature and systematics of lake-water Mg/Ca and Sr/Ca ratios of lake-water of dissolved inorganic carbon (DIC) Carbonates in lake-sediments Mollusks Ostracodes Charaphytes Isotope analysis Preparation of carbonate samples for isotope analysis Conclusions Summary Acknowledgments References 14. Carbon and oxygen isotope analysis of lake sediment cellulose: methods and applications. Brent B. Wolfe, Thomas W. D. Edwards, Richard J. Elgood & Kristina R. M. Beuning 373 xi Introduction Stable isotope tracers in lake Historical development Methods Key criteria for paleohydrologic reconstruction Applications Future research directions Summary Acknowledgements References Nitrogen isotopes in palaeolimnology. Michael R. Talbot 15. 401 Introduction Nitrogen in lakes: forms and distribution Nitrogen isotopes Nitrogen isotope studies in palaeolimnology: sampling and measurement Some examples Closing remarks Summary Acknowledgments References Glossary, acronyms and abbreviations 441 Index 493 xiii PREFACE The explosive growth of paleolimnology over the past two decades has provided impetus for the publication of this series of monographs detailing the numerous advances and new techniques being applied to the interpretation of lake histories. This is the second volume in the series and deals mainly with physical and geochemical analytical techniques.




Recent Marine Sediments


Book Description




Geochemistry of Marine Sediments


Book Description

The processes occurring in surface marine sediments have a profound effect on the local and global cycling of many elements. This graduate text presents the fundamentals of marine sediment geochemistry by examining the complex chemical, biological, and physical processes that contribute to the conversion of these sediments to rock, a process known as early diagenesis. Research over the past three decades has uncovered the fact that the oxidation of organic matter deposited in sediment acts as a causative agent for many early diagenetic changes. Summarizing and discussing these findings and providing a much-needed update to Robert Berner's Early Diagenesis: A Theoretical Approach, David J. Burdige describes the ways to quantify geochemical processes in marine sediment. By doing so, he offers a deeper understanding of the cycling of elements such as carbon, nitrogen, and phosphorus, along with important metals such as iron and manganese. No other book presents such an in-depth look at marine sediment geochemistry. Including the most up-to-date research, a complete survey of the subject, explanatory text, and the most recent mathematical formulations that have contributed to our greater understanding of early diagenesis, Geochemistry of Marine Sediments will interest graduate students of geology, geochemistry, and oceanography, as well as the broader community of earth scientists. It is poised to become the standard text on the subject for years to come.




Interactions of C, N, P and S Biogeochemical Cycles and Global Change


Book Description

This book is a natural extension of the SCOPE (Scientific Committee of Problems on the Environment) volumes on the carbon (C), nitrogen (N), phosphorus (P) and sulfur (S) biogeochemical cycles and their interactions (Likens, 1981; Bolin and Cook, 1983). Substantial progress in the knowledge of these cycles has been made since publication of those volumes. In particular, the nature and extent of biological and inorganic interactions between these cycles have been identified, positive and negative feedbacks recognized and the relationship between the cycles and global environmental change preliminarily elucidated. In March 1991, a NATO Advanced Research Workshop was held for one week in Melreux, Belgium to reexamine the biogeochemical cycles of C, N, P and S on a variety of time and space scales from a holistic point of view. This book is the result of that workshop. The biogeochemical cycles of C, N, P and S are intimately tied to each other through biological productivity and subsequently to problems of global environmental change. These problems may be the most challenging facing humanity in the 21 st century. In the broadest sense, "global change" encompasses both changes to the status of the large, globally connected atmospheric, oceanic and terrestrial environments (e. g. tropospheric temperature increase) and change occurring as the result of nearly simultaneous local changes in many regions of the world (e. g. eutrophication).




Kerogen


Book Description