Seismic Hazard in Mediterranean Regions


Book Description

Proceedings of the Summer School organized in Strasbourg, France, July 15-August 1, 1986, by European Mediterranean Seismological Centre and Institute de Physique du Globe de Strasbourg







Seismic Hazard in Mediterranean Regions


Book Description

Proceedings of the Summer School organized in Strasbourg, France, July 15-August 1, 1986, by European Mediterranean Seismological Centre and Institute de Physique du Globe de Strasbourg







Active Global Seismology


Book Description

Neotectonics involves the study of the motions and deformations of the Earth's crust that are current or recent in geologic time. The Mediterranean region is one of the most important regions for neotectonics and related natural hazards. This volume focuses on the neotectonics of the Eastern Mediterranean region, which has experienced many major extensive earthquakes, including the devastating Izmit, Turkey earthquake on August 17, 1999. The event lasted for 37 seconds, killing around 17,000 people, injuring 44,000 people, and leaving approximately half a million people homeless. Since then, several North American, European, and Turkish research groups have studied the neotectonics and earthquake potential of the region using different geological and geophysical methods, including GPS studies, geodesy, and passive source seismology. Some results from their studies were presented in major North American and European geological meetings. This volume highlights the work involving the Eastern Mediterranean region, which has one of the world's longest and best studied active strike-slip (horizontal motion) faults: the east-west trending North Anatolian fault zone, which is very similar to the San Andreas fault in California. This volume features discussions of: Widespread applications in measuring plate motion that have strong implications in predicting natural disasters like earthquakes, both on a regional and a global scale Recent motions, particularly those produced by earthquakes, that provide insights on the physics of earthquake recurrence, the growth of mountains, orogenic movements, and seismic hazards Unique methodical approaches in collecting tectonophysical data, including field, seismic, experimental, computer-based, and theoretical approaches. Active Global Seismology is a valuable resource for geoscientists, particularly in the field of tectonophysics, geophysics, geodynamics, seismology, structural geology, environmental geology, and geoengineering. Read an interview with the editors to find out more: https://eos.org/editors-vox/neotectonics-and-earthquake-forecasting







Earthquakes in the Mediterranean and Middle East


Book Description

This book examines historical evidence from the last 2000 years to analyse earthquakes in the eastern Mediterranean and Middle East. Early chapters review techniques of historical seismology, while the main body of the book comprises a catalogue of more than 4000 earthquakes identified from historical sources. Each event is supported by textual evidence extracted from primary sources and translated into English. Covering southern Rumania, Greece, Turkey, Lebanon, Israel, Egypt, Jordan, Syria, and Iraq, the book documents past seismic events, places them in a broad tectonic framework, and provides essential information for those attempting to prepare for, and mitigate the effects of, future earthquakes and tsunamis in these countries. This volume is an indispensable reference for researchers studying the seismic history of the eastern Mediterranean and Middle East, including archaeologists, historians, earth scientists, engineers and earthquake hazard analysts. A parametric catalogue of these seismic events can be downloaded from www.cambridge.org/9780521872928.







Recent Evolution and Seismicity of the Mediterranean Region


Book Description

The Mediterranean is one of the most studied regions of the world. In spite of this, a considerable spread of opinions exists about the geodynamic evolution and the present tectonic setting of this zone. The difficulty in recognizing the driving mechanisms of deformation is due to a large extent to the complex distribution in space and time of tectonic events, to the high number of parameters involved in this problem and to the scarce possibility of carrying out quantitative estimates of the deformation implied by the various geodynamic hypotheses. However, we think that a great deal of the present ambiguity could be removed if there were more frequent and open discussions among the scientists who are working on this problem. The meeting ofERICE was organized to provide an opportunity in this sense. In making this effort, we were prompted by the conviction that each step towards the understanding of the Mediterranean evolution is of basic importance both for its scientific consequences and for the possibleimplicationsfor society. It is well known, for instance, that the knowledge ofongoing tectonic processes in a given region and of their connection with seismic activity may lead to the recognition of middle long term precursors of strong earthquakes. The few cases of tentative earthquake prediction in the world occurred where information on large scale seismotectonic behavior was available. This led to identify the zones prone to dangerous shocks, where observations of short-term earthquake precursors were then concentrated.