Seismic Performance Analysis of Concrete Gravity Dams


Book Description

This book evaluates the seismic performance of concrete gravity dams, considering the effects of strong motion duration, mainshock-aftershock seismic sequence, and near-fault ground motion. It employs both the extended finite element method (XFEM) and concrete damaged plasticity (CDP) models to characterize the mechanical behavior of concrete gravity dams under strong ground motions, including the dam-reservoir-foundation interaction. In addition, it discusses the effects of the initial crack, earthquake direction, and cross-stream seismic excitation on the nonlinear dynamic response to strong ground motions, and on the damage-cracking risk of concrete gravity dams. This book provides a theoretical basis for the seismic performance evaluation of high dams, and can also be used as a reference resource for researchers and graduate students engaged in the seismic design of high dams.




Earthquake Engineering for Concrete Dams


Book Description

A comprehensive guide to modern-day methods for earthquake engineering of concrete dams Earthquake analysis and design of concrete dams has progressed from static force methods based on seismic coefficients to modern procedures that are based on the dynamics of dam–water–foundation systems. Earthquake Engineering for Concrete Dams offers a comprehensive, integrated view of this progress over the last fifty years. The book offers an understanding of the limitations of the various methods of dynamic analysis used in practice and develops modern methods that overcome these limitations. This important book: Develops procedures for dynamic analysis of two-dimensional and three-dimensional models of concrete dams Identifies system parameters that influence their response Demonstrates the effects of dam–water–foundation interaction on earthquake response Identifies factors that must be included in earthquake analysis of concrete dams Examines design earthquakes as defined by various regulatory bodies and organizations Presents modern methods for establishing design spectra and selecting ground motions Illustrates application of dynamic analysis procedures to the design of new dams and safety evaluation of existing dams. Written for graduate students, researchers, and professional engineers, Earthquake Engineering for Concrete Dams offers a comprehensive view of the current procedures and methods for seismic analysis, design, and safety evaluation of concrete dams.




Earthquake Engineering for Concrete Dams


Book Description

The hazard posed by large dams has long been known. Although no concrete dam has failed as a result of earthquake activity, there have been instances of significant damage. Concerns about the seismic safety of concrete dams have been growing recently because the population at risk in locations downstream of major dams continues to expand and because the seismic design concepts in use at the time most existing dams were built were inadequate. In this book, the committee evaluates current knowledge about the earthquake performance of concrete dams, including procedures for investigating the seismic safety of such structures. Earthquake Engineering for Concrete Dams specifically informs researchers about state-of-the-art earthquake analysis of concrete dams and identifies subject areas where additional knowledge is needed.




The Scaled Boundary Finite Element Method


Book Description

An informative look at the theory, computer implementation, and application of the scaled boundary finite element method This reliable resource, complete with MATLAB, is an easy-to-understand introduction to the fundamental principles of the scaled boundary finite element method. It establishes the theory of the scaled boundary finite element method systematically as a general numerical procedure, providing the reader with a sound knowledge to expand the applications of this method to a broader scope. The book also presents the applications of the scaled boundary finite element to illustrate its salient features and potentials. The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation covers the static and dynamic stress analysis of solids in two and three dimensions. The relevant concepts, theory and modelling issues of the scaled boundary finite element method are discussed and the unique features of the method are highlighted. The applications in computational fracture mechanics are detailed with numerical examples. A unified mesh generation procedure based on quadtree/octree algorithm is described. It also presents examples of fully automatic stress analysis of geometric models in NURBS, STL and digital images. Written in lucid and easy to understand language by the co-inventor of the scaled boundary element method Provides MATLAB as an integral part of the book with the code cross-referenced in the text and the use of the code illustrated by examples Presents new developments in the scaled boundary finite element method with illustrative examples so that readers can appreciate the significant features and potentials of this novel method—especially in emerging technologies such as 3D printing, virtual reality, and digital image-based analysis The Scaled Boundary Finite Element Method: Introduction to Theory and Implementation is an ideal book for researchers, software developers, numerical analysts, and postgraduate students in many fields of engineering and science.




Design of Gravity Dams


Book Description







Advances in Dam Engineering


Book Description

Expansion of water resources is a key factor in the socio-economic development of all countries. Dams play a critical role in water storage, especially for areas with unequal rainfall and limited water availability. While the safety of existing dams, periodic re-evaluations and life extensions are the primary objectives in developed countries, the design and construction of new dams are the main concerns in developing countries. The role of dam engineers has greatly changed over recent decades. Thanks to new technologies, the surveillance, monitoring, design and analysis tasks involved in this process have significantly improved. The current edited book is a collection of dam-related papers. The overall aim of this edited book is to improve modeling, simulation and field measurements for different dam types (i.e. concrete gravity dams, concrete arch dams, and embankments). The articles cover a wide range of topics on the subject of dams, and reflect the scientific efforts and engineering approaches in this challenging and exciting research field.







Proceedings of 17th Symposium on Earthquake Engineering (Vol. 2)


Book Description

This book presents select proceedings of the 17th Symposium on Earthquake Engineering organized by the Department of Earthquake Engineering, Indian Institute of Technology Roorkee. The topics covered in the proceedings include engineering seismology and seismotectonics, earthquake hazard assessment, seismic microzonation and urban planning, dynamic properties of soils and ground response, ground improvement techniques for seismic hazards, computational soil dynamics, dynamic soil–structure interaction, codal provisions on earthquake-resistant design, seismic evaluation and retrofitting of structures, earthquake disaster mitigation and management, and many more. This book also discusses relevant issues related to earthquakes, such as human response and socioeconomic matters, post-earthquake rehabilitation, earthquake engineering education, public awareness, participation and enforcement of building safety laws, and earthquake prediction and early warning system. This book is a valuable reference for researchers and professionals working in the area of earthquake engineering.




Dam Engineering


Book Description

Dams are critical structures in the sense that damage or breach of even a small dam may cause an unacceptable loss of life and property. Therefore, the safety of dams over the intended lifespan is of utmost importance for unrestricted operation. The basic prerequisites for any safe and successful operation of a dam include state-of-the-art design, experimental investigations of the construction material and properties of the foundation, a refined theoretical analysis of relevant load cases, and high-quality construction. In the past decades, many advancements have been achieved in both construction technologies and design, including those for the prediction of the long-term behavior of dams under various loading conditions. As such, this book examines these advancements with respect to the design, construction, and performance of earth, rockfill, and concrete dams. Over eight chapters, this book provides a comprehensive overview of the latest progress and research in dam engineering.