Seismic Performance Evaluation of Suspension Bridges


Book Description

Structural response of Vincent Thomas Bridge to Oct. 1, 1987 earthquake centered in Whittier, California.







Performance-based Seismic Bridge Design


Book Description

"TRB's National Cooperative Highway Research Program (NCHRP) Synthesis 440, Performance-Based Seismic Bridge Design (PBSD) summarizes the current state of knowledge and practice for PBSD. PBSD is the process that links decision making for facility design with seismic input, facility response, and potential facility damage. The goal of PBSD is to provide decision makers and stakeholders with data that will enable them to allocate resources for construction based on levels of desired seismic performance"--Publisher's description.










Bridge Engineering Handbook, Second Edition


Book Description

Over 140 experts, 14 countries, and 89 chapters are represented in the second edition of the Bridge Engineering Handbook. This extensive collection highlights bridge engineering specimens from around the world, contains detailed information on bridge engineering, and thoroughly explains the concepts and practical applications surrounding the subject. Published in five books: Fundamentals, Superstructure Design, Substructure Design, Seismic Design, and Construction and Maintenance, this new edition provides numerous worked-out examples that give readers step-by-step design procedures, includes contributions by leading experts from around the world in their respective areas of bridge engineering, contains 26 completely new chapters, and updates most other chapters. It offers design concepts, specifications, and practice, as well as the various types of bridges. The text includes over 2,500 tables, charts, illustrations, and photos. The book covers new, innovative and traditional methods and practices; explores rehabilitation, retrofit, and maintenance; and examines seismic design and building materials. The fourth book, Seismic Design contains 18 chapters, and covers seismic bridge analysis and design. What’s New in the Second Edition: Includes seven new chapters: Seismic Random Response Analysis, Displacement-Based Seismic Design of Bridges, Seismic Design of Thin-Walled Steel and CFT Piers, Seismic Design of Cable-Supported Bridges, and three chapters covering Seismic Design Practice in California, China, and Italy Combines Seismic Retrofit Practice and Seismic Retrofit Technology into one chapter called Seismic Retrofit Technology Rewrites Earthquake Damage to Bridges and Seismic Design of Concrete Bridges chapters Rewrites Seismic Design Philosophies and Performance-Based Design Criteria chapter and retitles it as Seismic Bridge Design Specifications for the United States Revamps Seismic Isolation and Supplemental Energy Dissipation chapter and retitles it as Seismic Isolation Design for Bridges This text is an ideal reference for practicing bridge engineers and consultants (design, construction, maintenance), and can also be used as a reference for students in bridge engineering courses.




Structural Health Monitoring of Long-Span Suspension Bridges


Book Description

Long span suspension bridges cost billions. In recent decades, structural health monitoring systems have been developed to measure the loading environment and responses of these bridges in order to assess serviceability and safety while tracking the symptoms of operational incidents and potential damage. This helps ensure the bridge functions properly during a long service life and guards against catastrophic failure under extreme events. Although these systems have achieved some success, this cutting-edge technology involves many complex topics that present challenges to students, researchers, and engineers alike. Systematically introducing the fundamentals and outlining the advanced technologies for achieving effective long-term monitoring, Structural Health Monitoring of Long-Span Suspension Bridges covers: The design of structural health monitoring systems Finite element modelling and system identification Highway loading monitoring and effects Railway loading monitoring and effects Temperature monitoring and thermal behaviour Wind monitoring and effects Seismic monitoring and effects SHMS-based rating method for long span bridge inspection and maintenance Structural damage detection and test-bed establishment These are applied in a rigorous case study, using more than ten years' worth of data, to the Tsing Ma suspension bridge in Hong Kong to examine their effectiveness in the operational performance of a real bridge. The Tsing Ma bridge is the world's longest suspension bridge to carry both a highway and railway, and is located in one of the world’s most active typhoon regions. Bridging the gap between theory and practice, this is an ideal reference book for students, researchers, and engineering practitioners.




Seismic Performance Evaluation of Reinforced Concrete Bridge Piers Considering Postearthquake Capacity Degradation


Book Description

Bridges play a key role in the transportation sector while serving as lifelines for the economy and safety of communities. The need for resilient bridges is especially important following natural disasters, where they serve as evacuation, aid, and supply routes to an affected area. Much of the earthquake engineering community is interested in improving the resiliency of bridges, and many contributions to the field have been made in the past decades, where a shift towards performancebased design (PBD) practices is underway. While the Canadian Highway Bridge Design Code (CHBDC) has implemented PBD as a requirement for the seismic design of lifeline and major route bridges, the nature of PBD techniques translate to a design process that is not universally compatible for all scenarios and hazards. Therefore, there is great benefit to be realised in the development of PBD guidelines for mainshock-aftershock seismic sequences for scenarios in which the chance to assess and repair a bridge is not possible following a recent mainshock. This research analytically explored a parameterized set of 20 reinforced concrete bridge piers which share several geometrical and material properties with typical bridge bents that support many Canadian bridges. Of those piers, half are designed using current PBD guidelines provided in the 2019 edition of the CHBDC, whereas the remaining half are designed with insufficient transverse reinforcement commonly found in the bridges designed pre-2000. To support this study, a nonlinear fiber-based modelling approach with a proposed material strength degradation scheme is developed using the OpenSEES finite element analysis software. A multiple conditional mean spectra (CMS) approach is used to select a suite of 50 mainshock-aftershock ground motion records for the selected site in Vancouver, British Columbia, which consist of crustal, inslab, and interface earthquakes that commonly occur in areas near the Cascadia Subduction zone. Nonlinear time history analysis is performed for mainshock-only and mainshock-aftershock excitations, and static pushover analysis is also performed in lateral and axial directions for the intact columns, as well as in their respective post-MS and post-AS damaged states. Using the resulting data, a framework for post-earthquake seismic capacity estimation of the bridge piers is developed using machine learning regression methods, where several candidate models are tuned using an exhaustive grid search algorithm approach and k-fold crossvalidation. The tuned models are fitted and evaluated against a test set of data to determine a single best performing model using a multiple scorer performance index as the metric. The resulting performance index suggests that the decision tree model is the most suitable regressor for capacity estimation due to this model exhibiting the highest accuracy as well as lowest residual error. Moreover, this study also assessed the fragility of the bridge piers subjected to mainshock-only and mainshock-aftershock earthquakes. Probabilistic seismic demand models (PSDMs) are derived for the columns designed using current PBD guidelines (PBD-compliant) to evaluate whether the current PBD criteria is sufficient for resisting aftershock effects. Additional PSDMs are generated for the columns with inadequate transverse reinforcement (PBD-deficient) to assess aftershock vulnerability of older bridges. The developed fragility curves indicate an increased fragility of all bridge piers for all damage levels. The findings indicate that adequate aftershock performance is achieved for bridge piers designed to current (2019) CHBDC extensive damage level criteria. Furthermore, it is suggested that minimal damage performance criteria need to be developed for aftershock effects, and the repairable damage level be reintroduced for major route bridges.




Seismic Structural Health Monitoring


Book Description

This book includes a collection of state-of-the-art contributions addressing both theoretical developments in, and successful applications of, seismic structural health monitoring (S2HM). Over the past few decades, Seismic SHM has expanded considerably, due to the growing demand among various stakeholders (owners, managers and engineering professionals) and researchers. The discipline has matured in the process, as can be seen by the number of S2HM systems currently installed worldwide. Furthermore, the responses recorded by S2HM systems hold great potential, both with regard to the management of emergency situations and to ordinary maintenance needs. The book’s 17 chapters, prepared by leading international experts, are divided into four major sections. The first comprises six chapters describing the specific requirements of S2HM systems for different types of civil structures and infrastructures (buildings, bridges, cultural heritage, dams, structures with base isolation devices) and for monitoring different phenomena (e.g. soil-structure interaction and excessive drift). The second section describes available methods and computational tools for data processing, while the third is dedicated to hardware and software tools for S2HM. In the book’s closing section, five chapters report on state-of-the-art applications of S2HM around the world.




Bridge Engineering Handbook


Book Description

Over 140 experts, 14 countries, and 89 chapters are represented in the second edition of the Bridge Engineering Handbook. This extensive collection highlights bridge engineering specimens from around the world, contains detailed information on bridge engineering, and thoroughly explains the concepts and practical applications surrounding the subjec