Seismic Assessment and Retrofit of Reinforced Concrete Buildings


Book Description

In most parts of the developed world, the building stock and the civil infrastructure are ageing and in constant need of maintenance, repair and upgrading. Moreover, in the light of our current knowledge and of modern codes, the majority of buildings stock and other types of structures in many parts of the world are substandard and deficient. This is especially so in earthquake-prone regions, as, even there, seismic design of structures is relatively recent. In those regions the major part of the seismic threat to human life and property comes from old buildings. Due to the infrastructure's increasing decay, frequently combined with the need for structural upgrading to meet more stringent design requirements (especially against seismic loads), structural retrofitting is becoming more and more important and receives today considerable emphasis throughout the world. In response to this need, a major part of the fib Model Code 2005, currently under development, is being devoted to structural conservation and maintenance. More importantly, in recognition of the importance of the seismic threat arising from existing substandard buildings, the first standards for structural upgrading to be promoted by the international engineering community and by regulatory authorities alike are for seismic rehabilitation of buildings. This is the case, for example, of Part 3: Strengthening and Repair of Buildings of Eurocode 8 (i. e. of the draft European Standard for earthquake-resistant design), and which is the only one among the current (2003) set of 58 Eurocodes attempting to address the problem of structural upgrading. It is also the case of the recent (2001) ASCE draft standard on Seismic evaluation of existing buildings and of the 1996 Law for promotion of seismic strengthening of existing reinforced concrete structures in Japan. As noted in Chapter 1 of this Bulletin, fib - as CEB and FIP did before - has placed considerable emphasis on assessment and rehabilitation of existing structures. The present Bulletin is a culmination of this effort in the special but very important field of seismic assessment and rehabilitation. It has been elaborated over a period of 4 years by Task Group 7.1 Assessment and retrofit of existing structures of fib Commission 7 Seismic design, a truly international team of experts, representing the expertise and experience of all the important seismic regions of the world. In the course of its work the team had six plenary two-day meetings: in January 1999 in Pavia, Italy; in August 1999 in Raleigh, North Carolina; in February 2000 in Queenstown, New Zealand; in July 2000 in Patras, Greece; in March 2001 in Lausanne, Switzerland; and in August 2001 in Seattle, Washington. In October 2002 the final draft of the Bulletin was presented to public during the 1st fib Congress in Osaka. It was also there that it was approved by fib Commission 7 Seismic Design. The contents is structured into main chapters as follows: 1 Introduction - 2 Performance objectives and system considerations - 3 Review of seismic assessment procedures - 4 Strength and deformation capacity of non-seismically detailed components - 5 Seismic retrofitting techniques - 6 Probabilistic concepts and methods - 7 Case studies




Seismic Retrofit of Existing Reinforced Concrete Buildings


Book Description

Seismic Retrofit of Existing Reinforced Concrete Buildings Understand the complexities and challenges of retrofitting building infrastructure Across the world, buildings are gradually becoming structurally unsound. Many were constructed before seismic load capacity was a mandatory component of building standards, and were often built with low-quality materials or using unsafe construction practices. Many more are simply aging, with materials degrading, and steel corroding. As a result, efforts are ongoing to retrofit existing structures, and to develop new techniques for assessing and enhancing seismic load capacity in order to create a safer building infrastructure worldwide. Seismic Retrofit of Existing Reinforced Concrete Buildings provides a thorough book-length discussion of these techniques and their applications. Balancing theory and practice, the book provides engineers with a broad base of knowledge from which to approach real-world seismic assessments and retrofitting projects. It incorporates knowledge and experience frequently omitted from the building design process for a fuller account of this critical engineering subfield. Seismic Retrofit of Existing Reinforced Concrete Buildings readers will also find: Detailed treatment of each available strengthening technique, complete with advantages and disadvantages In-depth guidelines to select a specific technique for a given building type and/or engineering scenario Step-by-step guidance through the assessment/retrofitting process Seismic Retrofit of Existing Reinforced Concrete Buildings is an ideal reference for civil and structural engineering professionals and advanced students, particularly those working in seismically active areas.




Seismic Assessment and Rehabilitation of Existing Buildings


Book Description

The present volume contains a total of 23 papers centred on the research area of Seismic Assessment and Rehabilitation of Existing Buildings. This subject also forms the core of Project SfP977231, sponsored by the NATO Science for Peace Office and supported by the Scientific and Technical Research Council of Turkey [ TUBIT AK ]. Most of these papers were presented by the authors at a NATO Science for Peace Workshop held in Izmir on 13 - 14 May, 2003 and reflect a part of their latest work conducted within the general confines of the title of the NATO Project. Middle East Technical University, Ankara, Turkey serves as the hub of Project SfP977231 and coordinates research under the project with universities within Turkey, e. g. Istanbul Technical University and Kocaeli University, and with partner institutions in Greece and the Former Yugoslav Republic of Macedonia: A few articles have also been contributed by invited experts, who are all noted researchers in the field. Altogether, the contents of the volume deal with a vast array of problems in Seismic Assessment and Rehabilitation and cover a wide range of possible solutions, techniques and proposals. It is intended to touch upon many of these aspects separately below. Earthquakes constitute possibly the most widely spread and also the most feared of natural hazards. Recent earthquakes within the first six months of 2003, such as the Bingol Earthquake in Turkey and the Algerian earthquake, have caused both loss of life and severe damage to property.




Advanced Fibre-Reinforced Polymer (FRP) Composites for Structural Applications


Book Description

Advanced Fibre-reinforced Polymer (FRP) Composites for Structural Applications, Second Edition provides updates on new research that has been carried out on the use of FRP composites for structural applications. These include the further development of advanced FRP composites materials that achieve lighter and stronger FRP composites, how to enhance FRP integrated behavior through matrix modification, along with information on pretension treatments and intelligence technology. The development of new technology such as automated manufacturing and processing of fiber-reinforced polymer (FRP) composites have played a significant role in optimizing fabrication processing and matrix formation. In this new edition, all chapters have been brought fully up-to-date to take on the key aspects mentioned above. The book's chapters cover all areas relevant to advanced FRP composites, from the material itself, its manufacturing, properties, testing and applications in structural and civil engineering. Applications span from civil engineering, to buildings and the energy industry. - Covers all areas relevant to advanced FRP composites, from the material itself, its manufacturing, properties, testing and applications in structural engineering - Features new manufacturing techniques, such as automated fiber placement and 3D printing of composites - Includes various applications, such as prestressed-FRP, FRP made of short fibers, continuous structural health monitoring using advanced optical fiber Bragg grating (FBG), durability of FRP-strengthened structures, and the application of carbon nano-tubes or platelets for enhancing durability of FRP-bonded structures




Seismic Strengthening of Concrete Buildings Using FRP Composites


Book Description

"This CD-ROM consists of eight papers that were presented by ACI Committee 440 at the Spring Convention in Atlanta, GA, in April 2007"--Site Web de l'éditeur




Advanced Multilayered and Fibre-Reinforced Composites


Book Description

I express my sincere gratitude to NATO Science Committee for granting me the financial award to organize and direct the Advanced Research Workshop on "MULTILAYERED and FIBRE-REINFORCED COMPOSITES: PROBLEMS AND PROSPECTS" that was held in Kiev, Ukraine, during the period of June 2 - 6, 1997, in collaboration with Professor S. A. Firstov of the Frantsevich Institute for Problems of Materials Science, National Academy of Sciences, Kiev, Ukraine. In this context I wish to convey special thanks to Dr. J. A. Raussell-Colom, NATO Programme Director for Priority Area on High Technology, for his kind efforts and continuous guidance in the course of organizing the Workshop. I appreciate sincerely the opportunity of working closely with Professor Firstov and acknowledge with deep gratitude his outstanding contribution in co-directing the Workshop. I wish to express my special thanks to Dr. N. Orlovskaya of the Frantsevich Institute, for her outstanding contribution towards both the organization and conduct of the Workshop. I wish to convey my sincere thanks to Professor V. V. Skorohord, Deputy Director of the Frantsevich Institute, on behalf of the same Institute, for hosting the Workshop and welcoming the participants to l{iev. The very kind efforts of the members of the Scientific Advisory Committee, the Local Organizing Committee and the Staff of the Frantsevich Institute towards the organization and conduct of the Workshop, are gratefully appreciated. I convey my full indebtedness to all researchers who participated in the Workshop.




Retrofitting of Concrete Structures by Externally Bonded FRPs, With Emphasis on Seismic Applications


Book Description

fib Bulletin 35 is the first bulletin to publish documentation from an fib short course. These courses are held worldwide and cover advanced knowledge of structural concrete in general, or specific topics. They are organized by fib and given by internationally recognized experts in fib, often supplemented with local experts active in fib. They are based on the knowledge and expertise from fib's ten Commissions and nearly fifty Task Groups. fib Bulletin 35 presents the course materials developed for the short course "Retrofitting of Concrete Structures through Externally Bonded FRP, with emphasis on Seismic Applications", given in Ankara and Istanbul in June 2005. The course drew on expertise both from outside Turkey and from the large pool of local experts on this subject. In most countries of the world, the building stock is ageing and needs continuous maintenance or repair. Moreover, the majority of existing constructions are deficient in the light of current knowledge and design codes. The problem of structural deficiency of existing constructions is especially acute in seismic regions, as, even there, seismic design of structures is relatively recent. The direct and indirect costs of demolition and reconstruction of structurally deficient constructions are often prohibitive; furthermore they entail a substantial waste of natural resources and energy. Therefore, structural retrofitting is becoming increasingly widespread throughout the world. Externally bonded Fibre Reinforced Polymers (FRPs) are rapidly becoming the technique of choice for structural retrofitting. They are cleaner and easier to apply than conventional retrofitting techniques, reduce disruption to the occupancy and operation of the facility, do not generate debris or waste, and reduce health and accident hazards at the construction site as well as noise and air pollution in the surroundings. fib Bulletin 35 gives state-of-the-art coverage of retrofitting through FRPs and presents relevant provisions from three recent standardisation milestones: EN 1998-3:2005 "Eurocode 8: Design of structures for earthquake resistance - Part 3: Assessment and retrofitting of buildings", the 2005 Draft of the Turkish seismic design code, and the Italian regulatory document CNR-DT 200/04, "Instructions for Design, Execution and Control of Strengthening Interventions by Means of Fibre-Reinforced Composites" (2004).




Revolutionary Materials


Book Description




Reinforced Concrete Design with FRP Composites


Book Description

Although the use of composites has increased in many industrial, commercial, medical, and defense applications, there is a lack of technical literature that examines composites in conjunction with concrete construction. Fulfilling the need for a comprehensive, explicit guide, Reinforced Concrete Design with FRP Composites presents specific informat




FRP Composites in Civil Engineering


Book Description

This Proceedings contains the papers presented at the International Conference on FRP Composites in Civil Engineering, held in Hong Kong, China, on 12-15 December 2001. The papers, contributed from 24 countries, cover a wide spectrum of topics and demonstrate the recent advances in the application of FRP (Fibre-reinforced polymer) composites in civil engineering, while pointing to future directions of research in this exciting area.