Seismic Hazard and Risk Assessment


Book Description

This book contains the best contributions presented during the 6th National Conference on Earthquake Engineering and the 2nd National Conference on Earthquake Engineering and Seismology - 6CNIS & 2CNISS, that took place on June 14-17, 2017 in Bucharest - Romania, at the Romanian Academy and Technical University of Civil Engineering of Bucharest. The book offers an updated overview of seismic hazard and risk assessment activities, with an emphasis on recent developments in Romania, a very challenging case study because of its peculiar intermediate-depth seismicity and evolutive code-compliant building stock. Moreover, the book collects input of renowned scientists and professionals from Germany, Greece, Italy, Japan, Netherlands, Portugal, Romania, Spain, Turkey and United Kingdom.The content of the book focuses on seismicity of Romania, geotechnical earthquake engineering, structural analysis and seismic design regulations, innovative solutions for seismic protection of building structures, seismic risk evaluation, resilience-based assessment of structures and management of emergency situations. The sub-chapters consist of the best papers of 6CNIS & 2CNISS selected by the International Advisory and Scientific Committees. The book is targeted at researchers and experts in seismic hazard and risk, evaluation and rehabilitation of buildings and structures, insurers and re-insurers, and decision makers in the field of emergency situations and recovery activities.




Seismic Vulnerability of Structures


Book Description

This book is focused on the seismic vulnerability assessment methods, applied to existing buildings, describing several behaviors and new approaches for assessment on a large scale (urban area). It is clear that the majority of urban centers are composed of old buildings, designed according to concepts and rules that are inadequate to the seismic context. How to assess the vulnerability of existing buildings is an essential step to improve the management of seismic risk and its prevention policy. After some key reminders, this book describes seismic vulnerability methods applied to a large number of structures (buildings and bridges) in moderate (France, Switzerland) and strong seismic prone regions (Italy, Greece). Contents 1. Seismic Vulnerability of Existing Buildings: Observational and Mechanical Approaches for Application in Urban Areas, Sergio Lagomarsino and Serena Cattari. 2. Mechanical Methods: Fragility Curves and Pushover Analysis, Caterina Negulescu and Pierre Gehl. 3. Seismic Vulnerability and Loss Assessment for Buildings in Greece, Andreas J. Kappos. 4. Experimental Method: Contribution of Ambient Vibration Recordings to the Vulnerability Assessment, Clotaire Michel and Philippe Guéguen. 5. Numerical Model: Simplified Strategies for Vulnerability Seismic Assessment of Existing Structures, Cédric Desprez, Panagiotis Kotronis and Stéphane Grange. 6. Approach Based on the Risk Used in Switzerland, Pierino Lestuzzi. 7. Preliminary Evaluation of the Seismic Vulnerability of Existing Bridges, Denis Davi. About the Authors Philippe Guéguen is a Senior IFSTTAR Researcher at ISTerre, Joseph Fourier University Grenoble 1, France




Handbook of Seismic Risk Analysis and Management of Civil Infrastructure Systems


Book Description

Earthquakes represent a major risk to buildings, bridges and other civil infrastructure systems, causing catastrophic loss to modern society. Handbook of seismic risk analysis and management of civil infrastructure systems reviews the state of the art in the seismic risk analysis and management of civil infrastructure systems. Part one reviews research in the quantification of uncertainties in ground motion and seismic hazard assessment. Part twi discusses methodologies in seismic risk analysis and management, whilst parts three and four cover the application of seismic risk assessment to buildings, bridges, pipelines and other civil infrastructure systems. Part five also discusses methods for quantifying dependency between different infrastructure systems. The final part of the book considers ways of assessing financial and other losses from earthquake damage as well as setting insurance rates. Handbook of seismic risk analysis and management of civil infrastructure systems is an invaluable guide for professionals requiring understanding of the impact of earthquakes on buildings and lifelines, and the seismic risk assessment and management of buildings, bridges and transportation. It also provides a comprehensive overview of seismic risk analysis for researchers and engineers within these fields. This important handbook reviews the wealth of recent research in the area of seismic hazard analysis in modern earthquake design code provisions and practices Examines research into the analysis of ground motion and seismic hazard assessment, seismic risk hazard methodologies Addresses the assessment of seismic risks to buildings, bridges, water supply systems and other aspects of civil infrastructure




Seismic Risk Assessment of Existing Building Structures in Lebanon


Book Description

Given its location on the seismic map of the region, and its history of seismic events. Lebanon can be classified as a seismic prone country. Today, almost all structures are being designed without taking into account earthquake loading conditions, which leads to the assumption that current structures in Lebanon are unsafe for seismic loading. In this study, the weaknesses in the current design and construction practices of reinforced concrete building structures in Lebanon with regard to seismic performance were examined. The resistance and ductility of ideal model buildings with design and structural systems similar to those used in Lebanon was examined. Several design parameters were investigated, namely, building height, shear walls distribution in the building, and the design ground acceleration. Three design accelerations were considered in the analysis, namely, 0.15g. 0.2g and 0.3g. For each of the parameters above, the following design requirements were evaluated: (i) strength requirements, (ii) dimensional limitations of the beams and columns, (iii) "strong column-weak beam" design strategy, (iv) strength of beam-column joints, and (v) ductility of the beams and slab. Based on the results of this study it was concluded that the structural member sizes in building structures in Lebanon are inappropriate for seismic loading conditions under high seismic risk. The strength requirements for the slabs and beams were unsatisfactory for both moderate and high seismic risk. All columns satisfied the strength requirements, except for edge columns under high seismic risk. Shear walls may encounter flexural failure under strong ground shaking. The shear strength of the beams and walls was satisfactory for all parameters considered. On the other hand, the shear strength requirements for columns were unsatisfactory except for exterior columns when the direction of earthquake is parallel to their long plan dimension. Under severe ground shaking, the beams and slabs are not ductile enough to ensure adequate energy absorption and dissipation capability. The beam-column joints may fail under earthquake loading, due to their inadequate shear resistance to earthquake forces and the lack of confinement reinforcement throughout the depth of the joint. Finally, the strong column-weak beam design concept was met.




Seismic Resistant Structures


Book Description

Research studies on the preparation for and mitigation of future earthquakes, an area of increasing importance to many countries around the world, comprise this volume. The selected papers included in this book have been prepared by experts from around the world in the fields of earthquake engineering relevant to the design of structures. As the world’s population has concentrated in urban areas resulting in buildings in regions of high seismic vulnerability, we have seen the consequences of natural disasters take an ever higher toll on human existence. Protecting the built environment in earthquake-prone regions involves not only the optimal design and construction of new facilities, but also the upgrading and rehabilitation of existing structures including heritage buildings, which is an important area of research. Major earthquakes and associated effects, such as tsunamis, continue to stress the need to carry out more research and a better understanding of these phenomena is required to design earthquake resistant buildings and to carry out risk assessment and vulnerability studies.




Seismic Risk Assessment and Retrofitting


Book Description

Many more people are coming to live in earthquake-prone areas, especially urban ones. Many such areas contain low-rise, low-cost housing, while little money is available to retrofit the buildings to avoid total collapse and thus potentially save lives. The lack of money, especially in developing countries, is exacerbated by difficulties with administration, implementation and public awareness. The future of modern earthquake engineering will come to be dominated by new kinds of measuring technologies, new materials developed especially for low-rise, low-cost buildings, simpler and thus lower cost options for retrofitting, cost cutting and raising public awareness. The book covers all the areas involved in this complex issue, from the prevention of total building collapse, through improvement techniques, to legal, financial, taxation and social issues. The contributors have all made valuable contributions in their own particular fields; all of them are or have been closely involved with the issues that can arise in seismic zones in any country. The recent research results published here offer invaluable pointers to practicing engineers and administrators, as well as other scientists whose work involves saving the lives and property of the many millions of people who live and work in hazardous buildings.




Risk Management Series: Designing for Earthquakes - A Manual for Architects


Book Description

Earthquakes in the United States are regional in their occurrence and while California is famous for its earthquake other states, such as Texas, have much less concern for the threat of temblors. However, architectural practice is becoming increasingly national and global, and the architect in Texas may find that the next project is in California. Thus it has become necessary for the professional architect to have some knowledge of the earthquake problem and how design seeks to control it. Designing for Earthquakes: a Manual for Architects is intended to explain the principles of seismic design for those without a technical background in engineering and seismology. The primary intended audience is that of architects, and includes practicing architects, architectural students and faculty in architectural schools who teach structures and seismic design. For this reason the text and graphics are focused on those aspects of seismic design that are important for the architect to know. Because of its non-technical approach this publication will also be useful to anyone who has an interest and concern for the seismic protection of buildings, including facility managers, building owners and tenants, building committee participants, emergency service personnel and building officials. Engineers and engineering students will also gain from this discussion of seismic design from an architectural viewpoint. The principles discussed are applicable to a wide range of building types, both new and existing. The focus is on buildings that are designed by a team that includes architects, engineers and other consultants.




Earthquake-Resistant Structures


Book Description

Earthquake engineering is the ultimate challenge for structural engineers. Even if natural phenomena involve great uncertainties, structural engineers need to design buildings, bridges, and dams capable of resisting the destructive forces produced by them. These disasters have created a new awareness about the disaster preparedness and mitigation. Before a building, utility system, or transportation structure is built, engineers spend a great deal of time analyzing those structures to make sure they will perform reliably under seismic and other loads. The purpose of this book is to provide structural engineers with tools and information to improve current building and bridge design and construction practices and enhance their sustainability during and after seismic events. In this book, Khan explains the latest theory, design applications and Code Provisions. Earthquake-Resistant Structures features seismic design and retrofitting techniques for low and high raise buildings, single and multi-span bridges, dams and nuclear facilities. The author also compares and contrasts various seismic resistant techniques in USA, Russia, Japan, Turkey, India, China, New Zealand, and Pakistan. Written by a world renowned author and educator Seismic design and retrofitting techniques for all structures Tools improve current building and bridge designs Latest methods for building earthquake-resistant structures Combines physical and geophysical science with structural engineering




Earthquake Risk Reduction


Book Description

Encompassing theory and field experience, this book covers all the main subject areas in earthquake risk reduction, ranging from geology, seismology, structural and soil dynamics to hazard and risk assessment, risk management and planning, engineering and the architectural design of new structures and equipment. Earthquake Risk Reduction outlines individual national weaknesses that contribute to earthquake risk to people and property; calculates the seismic response of soils and structures, using the structural continuum 'Subsoil - Substructure - Superstructure - Non-structure'; evaluates the effectiveness of given designs and construction procedures for reducing casualties and financial losses; provides guidance on the key issue of choice of structural form; presents earthquake resistant designs methods for the four main structural materials - steel, concrete, reinforced masonry and timber - as well as for services equipment, plant and non-structural architectural components; contains a chapter devoted to problems involved in improving (retrofitting) the existing built environment. Compiled from the author's extensive professional experience in earthquake engineering, this key text provides an excellent treatment of the complex multidisciplinary process of earthquake risk reduction. This book will prove an invaluable reference and guiding tool to practicing civil and structural engineers and architects, researchers and postgraduate students in seismology, local governments and risk management officials.