Selected Papers II


Book Description

A renowned mathematician who considers himself both applied and theoretical in his approach, Peter Lax has spent most of his professional career at NYU, making significant contributions to both mathematics and computing. He has written several important published works and has received numerous honors including the National Medal of Science, the Lester R. Ford Award, the Chauvenet Prize, the Semmelweis Medal, the Wiener Prize, and the Wolf Prize. Several students he has mentored have become leaders in their fields. Two volumes span the years from 1952 up until 1999, and cover many varying topics, from functional analysis, partial differential equations, and numerical methods to conservation laws, integrable systems and scattering theory. After each paper, or collection of papers, is a commentary placing the paper in context and where relevant discussing more recent developments. Many of the papers in these volumes have become classics and should be read by any serious student of these topics. In terms of insight, depth, and breadth, Lax has few equals. The reader of this selecta will quickly appreciate his brilliance as well as his masterful touch. Having this collection of papers in one place allows one to follow the evolution of his ideas and mathematical interests and to appreciate how many of these papers initiated topics that developed lives of their own.




Selected Papers on Differential Equations and Analysis


Book Description

This volume contains translations of papers that originally appeared in the Japanese journal Sugaku. The papers range over a variety of topics, including differential equations with free boundary, singular integral operators, operator algebras, and relations between the Brownian motion on a manifold with function theory. The volume is suitable for graduate students and research mathematicians interested in analysis and differential equations."




Differential Equations


Book Description

First-rate introduction for undergraduates examines first order equations, complex-valued solutions, linear differential operators, the Laplace transform, Picard's existence theorem, and much more. Includes problems and solutions.




Selected Papers on Analysis and Differential Equations


Book Description

"Volume includes English translation of ten expository articles published in the Japanese journal Sugaku."




Djairo G. de Figueiredo - Selected Papers


Book Description

This volume presents a collection of selected papers by the prominent Brazilian mathematician Djairo G. de Figueiredo, who has made significant contributions in the area of Differential Equations and Analysis. His work has been highly influential as a challenge and inspiration to young mathematicians as well as in development of the general area of analysis in his home country of Brazil. In addition to a large body of research covering a variety of areas including geometry of Banach spaces, monotone operators, nonlinear elliptic problems and variational methods applied to differential equations, de Figueiredo is known for his many monographs and books. Among others, this book offers a sample of the work of Djairo, as he is commonly addressed, advancing the study of superlinear elliptic problems (both scalar and system cases), including questions on critical Sobolev exponents and maximum principles for non-cooperative elliptic systems in Hamiltonian form.




Geometric Analysis and Nonlinear Partial Differential Equations


Book Description

This book is not a textbook, but rather a coherent collection of papers from the field of partial differential equations. Nevertheless we believe that it may very well serve as a good introduction into some topics of this classical field of analysis which, despite of its long history, is highly modem and well prospering. Richard Courant wrote in 1950: "It has always been a temptationfor mathematicians to present the crystallized product of their thought as a deductive general theory and to relegate the individual mathematical phenomenon into the role of an example. The reader who submits to the dogmatic form will be easily indoctrinated. Enlightenment, however, must come from an understanding of motives; live mathematical development springs from specific natural problems which can be easily understood, but whose solutions are difficult and demand new methods or more general significance. " We think that many, if not all, papers of this book are written in this spirit and will give the reader access to an important branch of analysis by exhibiting interest ing problems worth to be studied. Most of the collected articles have an extensive introductory part describing the history of the presented problems as well as the state of the art and offer a well chosen guide to the literature. This way the papers became lengthier than customary these days, but the level of presentation is such that an advanced graduate student should find the various articles both readable and stimulating.




Existence Theorems for Ordinary Differential Equations


Book Description

This text examines fundamental and general existence theorems, along with uniqueness theorems and Picard iterants, and applies them to properties of solutions and linear differential equations. 1954 edition.




Selected Papers Of Yu I Manin


Book Description

The book is a collection of research and review articles in several areas of modern mathematics and mathematical physics published in the span of three decades. The ICM Kyoto talk “Mathematics as Metaphor” summarises the author's view on mathematics as an outgrowth of natural language.




James Serrin. Selected Papers


Book Description

These two volumes present the collected works of James Serrin. He did seminal work on a number of the basic tools needed for the study of solutions of partial differential equations. Many of them have been and are being applied to solving problems in science and engineering. Among the areas which he studied are maximum principle methods and related phenomena such as Harnack's inequality, the compact support principle, dead cores and bursts, free boundary problems, phase transitions, the symmetry of solutions, boundary layer theory, singularities and fine regularity properties. The volumes include commentaries by leading mathematicians to indicate the significance of the articles and to discuss further developments along the lines of these articles.




Stability Theory of Differential Equations


Book Description

Suitable for advanced undergraduates and graduate students, this was the first English-language text to offer detailed coverage of boundedness, stability, and asymptotic behavior of linear and nonlinear differential equations. It remains a classic guide, featuring material from original research papers, including the author's own studies. The linear equation with constant and almost-constant coefficients receives in-depth attention that includes aspects of matrix theory. No previous acquaintance with the theory is necessary, since author Richard Bellman derives the results in matrix theory from the beginning. In regard to the stability of nonlinear systems, results of the linear theory are used to drive the results of Poincaré and Liapounoff. Professor Bellman then surveys important results concerning the boundedness, stability, and asymptotic behavior of second-order linear differential equations. The final chapters explore significant nonlinear differential equations whose solutions may be completely described in terms of asymptotic behavior. Only real solutions of real equations are considered, and the treatment emphasizes the behavior of these solutions as the independent variable increases without limit.