Light, Plasmonics and Particles


Book Description

Light, Plasmonics and Particles focuses on the fundamental science and engineering applications of light scattering by particles, aerosols and hydrosols, and of localized plasmonics. The book is intended to be a self-contained and coherent resource volume for graduate students and professionals in the disciplines of materials science, engineering and related disciplines of physics and chemistry. In addition to chapters related to fundamental concepts, it includes detailed discussion of different numerical models, experimental systems and applications. In order to develop new devices, processes and applications, we need to advance our understanding of light-matter interactions. For this purpose, we need to have a firm grasp of electromagnetic wave phenomena, and absorption and scattering of waves by different size and shape geometrical objects. In addition, understanding of tunneling of waves based on electron and lattice vibrations and coupling with the thermal fluctuations to enhance near-field energy transfer mechanisms are required for the development of future energy harvesting devices and sensors. Reviews the fundamental science, available computational tools, experimental systems, and a wide range of applications of plasmonics Connects the cross-cutting science of the physics of electromagnetic light scattering by particles, plasmonics and phononic interactions at the electronic, molecular and lattice levels of materials Reviews applications of light-matter interactions of particles, aerosols, hydrosols and localized plasmonics




Fundamentals of Atmospheric Radiation


Book Description

Meeting the need for teaching material suitable for students of atmospheric science and courses on atmospheric radiation, this textbook covers the fundamentals of emission, absorption, and scattering of electromagnetic radiation from ultraviolet to infrared and beyond. Much of the contents applies to planetary atmosphere, with graded discussions providing a thorough treatment of subjects, including single scattering by particles at different levels of complexity. The discussion of the simple multiple scattering theory introduces concepts in more advanced theories, such that the more complicated two-stream theory allows readers to progress beyond the pile-of-plates theory. The authors are physicists teaching at the largest meteorology department in the US at Penn State. The problems given in the text come from students, colleagues, and correspondents, and the figures designed especially for this book facilitate comprehension. Ideal for advanced undergraduate and graduate students of atmospheric science. * Free solutions manual available for lecturers at www.wiley-vch.de/supplements/




Elastic Scattering of Electromagnetic Radiation


Book Description

The technique of elastic scattering of electromagnetic radiation has been used as a diagnostic tool in various disciplines of science,engineering,medicine and agriculture.The investigations relating to above problems may be divided in three categories:(i)Scattering by a single particle,(ii)Scattering by a tenuous system of uncorrelated scatterers and (iii)Scattering by a concentrated dispersion of scatterers.In the proposed book,the primary effort is to examine the analytic solutions of the scattering problems of types (i) and (ii) in diverse backgrounds.For the completeness of the book,analytic solutions in scattering situations of type (iii) are also covered in reasonable details.




Sonochemistry and Sonoluminescence


Book Description

Sonochemistry is studied primarily by chemists and sonoluminescence mainly by physicists, but a single physical phenomenon - acoustic cavitation - unites the two areas. The physics of cavitation bubble collapse, is relatively well understood by acoustical physicists but remains practically unknown to the chemists. By contrast, the chemistry that gives rise to electromagnetic emissions and the acceleration of chemical reactions is familiar to chemists, but practically unknown to acoustical physicists. It is just this knowledge gap that the present volume addresses. The first section of the book addresses the fundamentals of cavitation, leading to a more extensive discussion of the fundamentals of cavitation bubble dynamics in section two. A section on single bubble sonoluminescence follows. The two following sections address the new scientific discipline of sonochemistry, and the volume concludes with a section giving detailed descriptions of the applications of sonochemistry. The mixture of tutorial lectures and detailed research articles means that the book can serve as an introduction as well as a comprehensive and detailed review of these two interesting and topical subjects.




Selected Papers (1945-1980), with Commentary


Book Description

Consists of 73 articles and added items exclusively for this edition.




Selected Papers from the ISTEGIM'19


Book Description

This Special Issue compiles 11 scientific works that were presented during the International Symposium on Thermal Effects in Gas Flow in Microscale, ISTEGIM 2019, held in Ettlingen, Germany, in October 2019. This symposium was organized in the framework of the MIGRATE Network, an H2020 Marie Skłodowska-Curie European Training Network that ran from November 2015 to October 2019 (www.migrate2015.eu). MIGRATE intends to address some of the current challenges in innovation that face the European industry with regard to heat and mass transfer in gas-based microscale processes. The papers collected in this book focus on fundamental issues that are encountered in microfluidic systems involving gases, such as the analysis of gas–surface interactions under rarefied conditions, the development of innovative integrated microsensors for airborne pollutants, new experimental techniques for the measurement of local quantities in miniaturized devices and heat transfer issues inside microchannels. The variety of topics addressed in this book emphasizes that multi-disciplinarity is the real common thread of the current applied research in microfluidics. We hope that this book will help to stimulate early-stage researchers who are working in microfluidics all around the world. This book is dedicated to them!




Selected Papers on Fourier Optics


Book Description

SPIE Milestones are collections of seminal papers from the world literature covering important discoveries and developments in optics and photonics.