Selected Papers on Soil Mechanics


Book Description

A selection of papers by Professor AW Skempton, aiming to show his breadth of achievement in the field of soilmechanics. The chosen papers are reproduced chronologically, most of them falling into three subject groups: soil properties, stability of slopes, and foundations. This collection is useful to engineers, research workers, and students.




Soil Mechanics


Book Description

A logical, integrated and comprehensive coverage of both introductory and advanced topics in soil mechanics in an easy-to-understand style. Emphasis is placed on presenting fundamental behaviour before more advanced topics are introduced. The use of S.I. units throughout, and frequent references to current international codes of practice and refereed research papers, make the contents universally applicable. Written with the university student in mind and packed full of pedagogical features, this book provides an integrated and comprehensive coverage of both introductory and advanced topics in soil mechanics. It includes: worked examples to elucidate the technical content and facilitate self-learning a convenient structure (the book is divided into sections), enabling it to be used throughout second, third and fourth year undergraduate courses universally applicable contents through the use of SI units throughout, frequent references to current international codes of practice and refereed research papers new and advanced topics that extend beyond those in standard undergraduate courses. The perfect textbook for a range of courses on soils mechanics and also a very valuable resource for practising professional engineers.




Soil Mechanics and Foundation Engineering: Fundamentals and Applications


Book Description

Learn the basics of soil mechanics and foundation engineering This hands-on guide shows, step by step, how soil mechanics principles can be applied to solve geotechnical and foundation engineering problems. Presented in a straightforward, engaging style by an experienced PE, Soil Mechanics and Foundation Engineering: Fundamentals and Applications starts with the basics, assuming no prior knowledge, and gradually proceeds to more advanced topics. You will get rich illustrations, worked-out examples, and real-world case studies that help you absorb the critical points in a short time. Coverage includes: Phase relations Soil classification Compaction Effective stresses Permeability and seepage Vertical stresses under loaded areas Consolidation Shear strength Lateral earth pressures Site investigation Shallow and deep foundations Earth retaining structures Slope stability Reliability-based design




Rock and Soil Mechanics


Book Description

Although theoretical in character, this book provides a useful source of information for those dealing with practical problems relating to rock and soil mechanics - a discipline which, in the view of the authors, attempts to apply the theory of continuum to the mechanical investigation of rock and soil media. The book is in two separate parts. The first part, embodying the first three chapters, is devoted to a description of the media of interest. Chapter 1 introduces the main argument and discusses the essence of the discipline and its links with other branches of science which are concerned, on the one hand, with technical mechanics and, on the other, with the properties, origins, and formation of rock and soil strata under natural field conditions. Chapter 2 describes mechanical models of bodies useful for the purpose of the discourse and defines the concept of the limit shear resistance of soils and rocks. Chapter 3 gives the actual properties of soils and rocks determined from experiments in laboratories and in situ. Several tests used in geotechnical engineering are described and interconnections between the physical state of rocks and soils and their rheological parameters are considered.The second part of the book considers the applications of various theories which were either first developed for descriptive purposes in continuum mechanics and then adopted in soil and rock mechanics, or were specially developed for the latter discipline. Chapter 4 discusses the application of the theory of linear viscoelasticity in solving problems of stable behaviour of rocks and soils. Chapter 5 covers the use of the groundwater flow theory as applied to several problems connected with water movement in an undeformable soil or rock skeleton. Chapter 6 is a natural expansion of the arguments put forward in the previous chapter. Here the movement of water is regarded as the cause of deformation of the rock or soil skeleton and the consolidation theory developed on this basis is presented in a novel formulation. Some new engineering solutions are also reported. The seventh chapter is devoted to the limit state theory as applied to the study of the mechanical behaviour of soils and rocks. It presents some new solutions and methods which include both static and kinematic aspects of the problem, and some original effective methods for investigating media of limited cohesion. The final chapter gives a systematic account of the mechanics of highly dispersed soils, commonly called clays.




Experimental Soil Mechanics


Book Description

Basic soil testing book that emphasizes the basic principles of soil mechnics using spreadsheet data processing. The book includes soil laboratory experiments, and discussion of the theoretical concepts needed to interpret the experimental results.




Agricultural Engineering Soil Mechanics


Book Description

This book provides an introduction to classical soil mechanics and foundation engineering, and applies these principles to agricultural engineering situations. Theoretical design formulae are given, plus tables and graphs dealing with bearing capacity factors, wall pressure factors, soil cutting numbers and soil mechanical properties. Many example problems of design and analysis are solved in the text, and there are unsolved problems given for each chapter.The text begins with descriptions of soil origins and classification systems, including agricultural classification schemes, and then introduces classical concepts of soil strength and strength measurement techniques in the laboratory and in the field. Soil mechanics is applied to the design of shallow foundations, and the design formulae as well as tables of bearing capacity factors for design use are provided. New research and design findings in the specialized area of tall and heavy farm silos are also given, in addition to deep pile foundation design for heavy structures on very soft soils. Water flow in soils is treated, together with stability of ditch bank slopes and small earth dams, design of retaining walls and pressure pressures in bins and silos, soil erosion and protection methods, soil cutting and tillage design methods, soil compaction analysis, the use of geotextiles and problems of soil freezing.The book is directed primarily at professional university students in Agricultural Engineering, but will also be of interest to scientists working in other engineering branches, landscape architecture, soil physics and the like.




Unsaturated Soil Mechanics in Engineering Practice


Book Description

The definitive guide to unsaturated soil— from the world's experts on the subject This book builds upon and substantially updates Fredlund and Rahardjo's publication, Soil Mechanics for Unsaturated Soils, the current standard in the field of unsaturated soils. It provides readers with more thorough coverage of the state of the art of unsaturated soil behavior and better reflects the manner in which practical unsaturated soil engineering problems are solved. Retaining the fundamental physics of unsaturated soil behavior presented in the earlier book, this new publication places greater emphasis on the importance of the "soil-water characteristic curve" in solving practical engineering problems, as well as the quantification of thermal and moisture boundary conditions based on the use of weather data. Topics covered include: Theory to Practice of Unsaturated Soil Mechanics Nature and Phase Properties of Unsaturated Soil State Variables for Unsaturated Soils Measurement and Estimation of State Variables Soil-Water Characteristic Curves for Unsaturated Soils Ground Surface Moisture Flux Boundary Conditions Theory of Water Flow through Unsaturated Soils Solving Saturated/Unsaturated Water Flow Problems Air Flow through Unsaturated Soils Heat Flow Analysis for Unsaturated Soils Shear Strength of Unsaturated Soils Shear Strength Applications in Plastic and Limit Equilibrium Stress-Deformation Analysis for Unsaturated Soils Solving Stress-Deformation Problems with Unsaturated Soils Compressibility and Pore Pressure Parameters Consolidation and Swelling Processes in Unsaturated Soils Unsaturated Soil Mechanics in Engineering Practice is essential reading for geotechnical engineers, civil engineers, and undergraduate- and graduate-level civil engineering students with a focus on soil mechanics.




Grounded!


Book Description

"Elton presents 35 serious but entertaining experiments for budding scientists and engineering students that teach the fundamentals of soil mechanics and illustrate the dynamics of how soils behave and how they can be manipulated."--




Unsaturated Soil Mechanics in Geotechnical Practice


Book Description

There are other books on unsaturated soil mechanics, but this book is different. Unsaturated soil mechanics is only one aspect of a continuous range of soil mechanics studies that extends from the rheology of high water content soil slurries to the mechanics of soft soils, to stiff saturated soils, to unsaturated soils, and, at the far end of the r




Selected Geotechnical Papers of James K. Mitchell


Book Description

Sponsored by the Geo-Institute of ASCE. This collections contains 35 key papers by James K. Mitchell during his extraordinary career as a geotechnical engineer.Ø In addition to teaching, Mitchell's career encompassed geotechnical projects ranging from research on hazardous waste landfill stability at Kettleman Hills in California, to lunar soil analysis for NASA Apollo Missions, to working with the Mayor of San Francisco following the 1989 Loma Prieta Earthquake. He was elected to the National Academy of Engineering and the National Academy of Science. Topics include: experimental and analytic studies of soil behavior related to geotechnical and geo-environmental problems; soil improvement and ground reinforcement, physicochemical phenomena in soils, the stress-strain time behavior of soils, in situ measurement of soil properties, and mitigation of ground failure risk during earthquakes. ASCE's Engineering Classics series presents selected papers of lasting importance by eminent engineers who have made outstanding contributions to their field.