Selected Topics in Malliavin Calculus


Book Description

This book is not a research monograph about Malliavin calculus with the latest results and the most sophisticated proofs. It does not contain all the results which are known even for the basic subjects which are addressed here. The goal was to give the largest possible variety of proof techniques. For instance, we did not focus on the proof of concentration inequality for functionals of the Brownian motion, as it closely follows the lines of the analog result for Poisson functionals. This book grew from the graduate courses I gave at Paris-Sorbonne and Paris-Saclay universities, during the last few years. It is supposed to be as accessible as possible for students who have knowledge of Itô calculus and some rudiments of functional analysis.




The Malliavin Calculus and Related Topics


Book Description

The origin of this book lies in an invitation to give a series of lectures on Malliavin calculus at the Probability Seminar of Venezuela, in April 1985. The contents of these lectures were published in Spanish in [176]. Later these notes were completed and improved in two courses on Malliavin cal culus given at the University of California at Irvine in 1986 and at Ecole Polytechnique Federale de Lausanne in 1989. The contents of these courses correspond to the material presented in Chapters 1 and 2 of this book. Chapter 3 deals with the anticipating stochastic calculus and it was de veloped from our collaboration with Moshe Zakai and Etienne Pardoux. The series of lectures given at the Eighth Chilean Winter School in Prob ability and Statistics, at Santiago de Chile, in July 1989, allowed us to write a pedagogical approach to the anticipating calculus which is the basis of Chapter 3. Chapter 4 deals with the nonlinear transformations of the Wiener measure and their applications to the study of the Markov property for solutions to stochastic differential equations with boundary conditions.




Malliavin Calculus in Finance


Book Description

Malliavin Calculus in Finance: Theory and Practice aims to introduce the study of stochastic volatility (SV) models via Malliavin Calculus. Malliavin calculus has had a profound impact on stochastic analysis. Originally motivated by the study of the existence of smooth densities of certain random variables, it has proved to be a useful tool in many other problems. In particular, it has found applications in quantitative finance, as in the computation of hedging strategies or the efficient estimation of the Greeks. The objective of this book is to offer a bridge between theory and practice. It shows that Malliavin calculus is an easy-to-apply tool that allows us to recover, unify, and generalize several previous results in the literature on stochastic volatility modeling related to the vanilla, the forward, and the VIX implied volatility surfaces. It can be applied to local, stochastic, and also to rough volatilities (driven by a fractional Brownian motion) leading to simple and explicit results. Features Intermediate-advanced level text on quantitative finance, oriented to practitioners with a basic background in stochastic analysis, which could also be useful for researchers and students in quantitative finance Includes examples on concrete models such as the Heston, the SABR and rough volatilities, as well as several numerical experiments and the corresponding Python scripts Covers applications on vanillas, forward start options, and options on the VIX. The book also has a Github repository with the Python library corresponding to the numerical examples in the text. The library has been implemented so that the users can re-use the numerical code for building their examples. The repository can be accessed here: https://bit.ly/2KNex2Y.




Malliavin Calculus and Its Applications


Book Description

The Malliavin calculus was developed to provide a probabilistic proof of Hormander's hypoellipticity theorem. The theory has expanded to encompass other significant applications. The main application of the Malliavin calculus is to establish the regularity of the probability distribution of functionals of an underlying Gaussian process. In this way, one can prove the existence and smoothness of the density for solutions of various stochastic differential equations. More recently, applications of the Malliavin calculus in areas such as stochastic calculus for fractional Brownian motion, central limit theorems for multiple stochastic integrals, and mathematical finance have emerged. The first part of the book covers the basic results of the Malliavin calculus. The middle part establishes the existence and smoothness results that then lead to the proof of Hormander's hypoellipticity theorem. The last part discusses the recent developments for Brownian motion, central limit theorems, and mathematical finance.




Topics On Chaotic Systems: Selected Papers From Chaos 2008 International Conference


Book Description

This volume includes the best papers presented at the CHAOS 2008 International Conference on Chaotic Modeling, Simulation and Applications. It provides a valuable collection of new ideas, methods, and techniques in the field of nonlinear dynamics, chaos, fractals and their applications in general science and in engineering sciences.It touches on many fields such as chaos, dynamical systems, nonlinear systems, fractals and chaotic attractors. It also covers mechanics, hydrofluid dynamics, chaos in meteorology and cosmology, Hamiltonian and quantum chaos, chaos in biology and genetics, chaotic control, and chaos in economy and markets, and chaotic simulations; thus, containing cutting-edge interdisciplinary research with high-interest applications.These contributions present new solutions by analyzing the relevant data and through the use of recent advances in different fields, especially in chaotic simulation methods and techniques.




Introduction to Stochastic Analysis and Malliavin Calculus


Book Description

This volume presents an introductory course on differential stochastic equations and Malliavin calculus. The material of the book has grown out of a series of courses delivered at the Scuola Normale Superiore di Pisa (and also at the Trento and Funchal Universities) and has been refined over several years of teaching experience in the subject. The lectures are addressed to a reader who is familiar with basic notions of measure theory and functional analysis. The first part is devoted to the Gaussian measure in a separable Hilbert space, the Malliavin derivative, the construction of the Brownian motion and Itô's formula. The second part deals with differential stochastic equations and their connection with parabolic problems. The third part provides an introduction to the Malliavin calculus. Several applications are given, notably the Feynman-Kac, Girsanov and Clark-Ocone formulae, the Krylov-Bogoliubov and Von Neumann theorems. In this third edition several small improvements are added and a new section devoted to the differentiability of the Feynman-Kac semigroup is introduced. A considerable number of corrections and improvements have been made.




Differentiable Measures and the Malliavin Calculus


Book Description

This book provides the reader with the principal concepts and results related to differential properties of measures on infinite dimensional spaces. In the finite dimensional case such properties are described in terms of densities of measures with respect to Lebesgue measure. In the infinite dimensional case new phenomena arise. For the first time a detailed account is given of the theory of differentiable measures, initiated by S. V. Fomin in the 1960s; since then the method has found many various important applications. Differentiable properties are described for diverse concrete classes of measures arising in applications, for example, Gaussian, convex, stable, Gibbsian, and for distributions of random processes. Sobolev classes for measures on finite and infinite dimensional spaces are discussed in detail. Finally, we present the main ideas and results of the Malliavin calculus--a powerful method to study smoothness properties of the distributions of nonlinear functionals on infinite dimensional spaces with measures. The target readership includes mathematicians and physicists whose research is related to measures on infinite dimensional spaces, distributions of random processes, and differential equations in infinite dimensional spaces. The book includes an extensive bibliography on the subject.




Stochastic Partial Differential Equations With Additive Gaussian Noise - Analysis And Inference


Book Description

The stochastic partial differential equations (SPDEs) arise in many applications of the probability theory. This monograph will focus on two particular (and probably the most known) equations: the stochastic heat equation and the stochastic wave equation.The focus is on the relationship between the solutions to the SPDEs and the fractional Brownian motion (and related processes). An important point of the analysis is the study of the asymptotic behavior of the p-variations of the solutions to the heat or wave equations driven by space-time Gaussian noise or by a Gaussian noise with a non-trivial correlation in space.The book is addressed to public with a reasonable background in probability theory. The idea is to keep it self-contained and avoid using of complex techniques. We also chose to insist on the basic properties of the random noise and to detail the construction of the Wiener integration with respect to them. The intention is to present the proofs complete and detailed.




Selected Aspects of Fractional Brownian Motion


Book Description

Fractional Brownian motion (fBm) is a stochastic process which deviates significantly from Brownian motion and semimartingales, and others classically used in probability theory. As a centered Gaussian process, it is characterized by the stationarity of its increments and a medium- or long-memory property which is in sharp contrast with martingales and Markov processes. FBm has become a popular choice for applications where classical processes cannot model these non-trivial properties; for instance long memory, which is also known as persistence, is of fundamental importance for financial data and in internet traffic. The mathematical theory of fBm is currently being developed vigorously by a number of stochastic analysts, in various directions, using complementary and sometimes competing tools. This book is concerned with several aspects of fBm, including the stochastic integration with respect to it, the study of its supremum and its appearance as limit of partial sums involving stationary sequences, to name but a few. The book is addressed to researchers and graduate students in probability and mathematical statistics. With very few exceptions (where precise references are given), every stated result is proved.




Stochastic Calculus of Variations


Book Description

This monograph is a concise introduction to the stochastic calculus of variations (also known as Malliavin calculus) for processes with jumps. It is written for researchers and graduate students who are interested in Malliavin calculus for jump processes. In this book "processes with jumps" includes both pure jump processes and jump-diffusions. The author provides many results on this topic in a self-contained way; this also applies to stochastic differential equations (SDEs) "with jumps". The book also contains some applications of the stochastic calculus for processes with jumps to the control theory and mathematical finance. Namely, asymptotic expansions functionals related with financial assets of jump-diffusion are provided based on the theory of asymptotic expansion on the Wiener–Poisson space. Solving the Hamilton–Jacobi–Bellman (HJB) equation of integro-differential type is related with solving the classical Merton problem and the Ramsey theory. The field of jump processes is nowadays quite wide-ranging, from the Lévy processes to SDEs with jumps. Recent developments in stochastic analysis have enabled us to express various results in a compact form. Up to now, these topics were rarely discussed in a monograph. Contents: Preface Preface to the second edition Introduction Lévy processes and Itô calculus Perturbations and properties of the probability law Analysis of Wiener–Poisson functionals Applications Appendix Bibliography List of symbols Index