Computational and Experimental Fluid Mechanics with Applications to Physics, Engineering and the Environment


Book Description

The book presents a collection of selected papers from the I Workshop of the Venezuelan Society of Fluid Mechanics held on Margarita Island, Venezuela from November 4 to 9, 2012. Written by experts in their respective fields, the contributions are organized into five parts: - Part I Invited Lectures, consisting of full-length technical papers on both computational and experimental fluid mechanics covering a wide range of topics from drops to multiphase and granular flows to astrophysical flows, - Part II Drops, Particles and Waves - Part III Multiphase and Multicomponent Flows - Part IV Atmospheric and Granular Flows - and Part V Turbulent and Astrophysical Flows. The book is intended for upper-level undergraduate and graduate students as well as for physicists, chemists and engineers teaching and working in the field of fluid mechanics and its applications. The contributions are the result of recent advances in theoretical and experimental research in fluid mechanics, encompassing both fundamentals as well as applications to fluid engineering design, including pipelines, turbines, flow separators, hydraulic systems and biological fluid elements, and to granular, environmental and astrophysical flows.




Selected Topics of Computational and Experimental Fluid Mechanics


Book Description

This book contains invited lectures and selected contributions presented at the Enzo Levi and XIX Annual Meeting of the Fluid Dynamic Division of the Mexican Physical Society in 2013. It is aimed at fourth year undergraduate and graduate students, and scientists in the fields of physics, engineering and chemistry who are interested in fluid dynamics from an experimental and theoretical point of view. The invited lectures are introductory and avoid the use of complicated mathematics. The fluid dynamics applications include multiphase flow, convection, diffusion, heat transfer, rheology, granular material, viscous flow, porous media flow, geophysics and astrophysics. The material contained in the book includes recent advances in experimental and theoretical fluid dynamics and is suitable for both teaching and research.




Theoretical, Computational, and Experimental Solutions to Thermo-Fluid Systems


Book Description

This book presents select proceedings of the International Conference on Innovations in Thermo-Fluid Engineering and Sciences (ICITFES 2020). It covers topics in theoretical and experimental fluid dynamics, numerical methods in heat transfer and fluid mechanics, different modes of heat transfer, multiphase flow, fluid machinery, fluid power, refrigeration and air conditioning, and cryogenics. The book will be helpful to the researchers, scientists, and professionals working in the field of fluid mechanics and machinery, and thermal engineering.




Computational Methods in Environmental Fluid Mechanics


Book Description

Fluids play an important role in environmental systems appearing as surface water in rivers, lakes, and coastal regions or in the subsurface as well as in the atmosphere. Mechanics of environmental fluids is concerned with fluid motion, associated mass and heat transport as well as deformation processes in subsurface systems. In this reference work the fundamental modelling approaches based on continuum mechanics for fluids in the environment are described, including porous media and turbulence. Numerical methods for solving the process governing equations as well as its object-oriented computer implementation are discussed and illustrated with examples. Finally, the application of computer models in civil and environmental engineering is demonstrated.




New Results in Numerical and Experimental Fluid Mechanics XII


Book Description

This book gathers contributions to the 21st biannual symposium of the German Aerospace Aerodynamics Association (STAB) and the German Society for Aeronautics and Astronautics (DGLR). The individual chapters reflect ongoing research conducted by the STAB members in the field of numerical and experimental fluid mechanics and aerodynamics, mainly for (but not limited to) aerospace applications, and cover both nationally and EC-funded projects. Special emphasis is given to collaborative research projects conducted by German scientists and engineers from universities, research-establishments and industries. By addressing a number of cutting-edge applications, together with the relevant physical and mathematics fundamentals, the book provides readers with a comprehensive overview of the current research work in the field. The book’s primary emphasis is on aerodynamic research in aeronautics and astronautics, and in ground transportation and energy as well.




Recent Trends in Fluid Dynamics Research


Book Description

This book presents select proceedings of Conference on Recent Trends in Fluid Dynamics Research (RTFDR-21). It signifies the current research trends in fluid dynamics and convection heat transfer for both laminar and turbulent flow structures. The topics covered include fluid mechanics and applications, microfluidics and nanofluidics, numerical methods for multiphase flows, cavitation, combustion, fluid-particle interactions in turbulence, biological flows, CFD, experimental fluid mechanics, convection heat transfer, numerical heat transfer, fluid power, experimental heat transfer, heat transfer, non-newtonian rheology, and boundary layer theory. The book also discusses various fundamental and application-based research of fluid dynamics, heat transfer, combustion, etc., by theoretical and experimental approaches. The book will be a valuable reference for beginners, researchers, and professionals interested in fluid dynamics research and allied fields.




Computational Fluid Dynamics


Book Description

An introduction to CFD fundamentals and using commercial CFD software to solve engineering problems, designed for the wide variety of engineering students new to CFD, and for practicing engineers learning CFD for the first time. Combining an appropriate level of mathematical background, worked examples, computer screen shots, and step by step processes, this book walks the reader through modeling and computing, as well as interpreting CFD results. The first book in the field aimed at CFD users rather than developers. New to this edition: A more comprehensive coverage of CFD techniques including discretisation via finite element and spectral element as well as finite difference and finite volume methods and multigrid method. Coverage of different approaches to CFD grid generation in order to closely match how CFD meshing is being used in industry. Additional coverage of high-pressure fluid dynamics and meshless approach to provide a broader overview of the application areas where CFD can be used. 20% new content .




Orifice Plates and Venturi Tubes


Book Description

This book gives the background to differential-pressure flow measurement and goes through the requirements explaining the reason for them. For those who want to use an orifice plate or a Venturi tube the standard ISO 5167 and its associated Technical Reports give the instructions required. However, they rarely tell the users why they should follow certain instructions. This book helps users of the ISO standards for orifice plates and Venturi tubes to understand the reasons why the standards are as they are, to apply them effectively, and to understand the consequences of deviations from the standards.




Principles of Fluid Mechanics


Book Description

This book provides a comprehensive and wide-ranging introduction to fluid mechanics, assuming only a basic knowledge of calculus and physics. Introduces fluid mechanics within the context of a broad range of topics and disciplines by combining elements and concepts from different disciplines as is often found in solutions to engineering problems. The book integrates a discussion of fluid flow phenomena with that of other subjects, such as Solid Mechanics, Heat Transfer, Thermodynamics, and others. It also includes discussions of other fields of specialization often used to solve engineering problems, such as chemistry, biology, economics, sociology, and others. And, it integrates the use of computers and modern experimental techniques. The first edition of Introduction to Fluid Mechanics provides a unique thematic organization and divides the material into three sections: Theory. This section is divided into four categories: Introduction, Conservation Laws, Fluid Kinematics, and Fluid Dynamics. Analysis. In this section, procedures such as Dimensionless Analysis, Analytics, Experimental and Numerical Solutions are introduced and applied to fundamental problems. Special Topics. Topics such as ideal, invisicid flow, compressible flow, and dynamics of rotating fluids are reserved for separate chapters. The book also introduces ideas from computational and experimental fluid mechanics. An essential reference for all engineering professionals.




Recent Advances in Fluid Dynamics with Environmental Applications


Book Description

This book gathers selected contributions presented at the Enzo Levi and XX Annual Meeting of the Fluid Dynamic Division of the Mexican Physical Society in 2014. The individual papers explore recent advances in experimental and theoretical fluid dynamics and are suitable for use in both teaching and research. The fluid dynamics applications covered include multiphase flows, convection, diffusion, heat transfer, rheology, granular materials, viscous flows, porous media flows, geophysics and astrophysics. The contributions, some of which are introductory and avoid the use of complicated mathematics, are suitable for fourth-year undergraduate and graduate students. Accordingly, the book is of immense benefit to these students, as well as to scientists in the fields of physics, chemistry and engineering with an interest in fluid dynamics from experimental and theoretical points of view.