Selected Works of Oded Schramm


Book Description

This volume is dedicated to the memory of the late Oded Schramm (1961-2008), distinguished mathematician. Throughout his career, Schramm made profound and beautiful contributions to mathematics that will have a lasting influence. In these two volumes, Editors Itai Benjamini and Olle Häggström have collected some of his papers, supplemented with three survey papers by Steffen Rohde, Häggström and Cristophe Garban that further elucidate his work. The papers within are a representative collection that shows the breadth, depth, enthusiasm and clarity of his work, with sections on Geometry, Noise Sensitivity, Random Walks and Graph Limits, Percolation, and finally Schramm-Loewner Evolution. An introduction by the Editors and a comprehensive bibliography of Schramm's publications complete the volume. The book will be of especial interest to researchers in probability and geometry, and in the history of these subjects.




Unimodularity in Randomly Generated Graphs


Book Description

This volume contains the proceedings of the AMS Special Session on Unimodularity in Randomly Generated Graphs, held from October 8–9, 2016, in Denver, Colorado. Unimodularity, a term initially used in locally compact topological groups, is one of the main examples in which the generalization from groups to graphs is successful. The “randomly generated graphs”, which include percolation graphs, random Erdős–Rényi graphs, and graphings of equivalence relations, are much easier to describe if they result as random objects in the context of unimodularity, with respect to either a vertex-transient “host”-graph or a probability measure. This volume tries to give an impression of the various fields in which the notion currently finds strong development and application: percolation theory, point processes, ergodic theory, and dynamical systems.




In the Tradition of Thurston


Book Description

This book consists of 16 surveys on Thurston's work and its later development. The authors are mathematicians who were strongly influenced by Thurston's publications and ideas. The subjects discussed include, among others, knot theory, the topology of 3-manifolds, circle packings, complex projective structures, hyperbolic geometry, Kleinian groups, foliations, mapping class groups, Teichmüller theory, anti-de Sitter geometry, and co-Minkowski geometry. The book is addressed to researchers and students who want to learn about Thurston’s wide-ranging mathematical ideas and their impact. At the same time, it is a tribute to Thurston, one of the greatest geometers of all time, whose work extended over many fields in mathematics and who had a unique way of perceiving forms and patterns, and of communicating and writing mathematics.




Extended Abstracts Fall 2019


Book Description

This book collects the abstracts of the mini-courses and lectures given during the Intensive Research Program “Spaces of Analytic Functions: Approximation, Interpolation, Sampling” which was held at the Centre de Recerca Matemàtica (Barcelona) in October–December, 2019. The topics covered in this volume are approximation, interpolation and sampling problems in spaces of analytic functions, their applications to spectral theory, Gabor analysis and random analytic functions. In many places in the book, we see how a problem related to one of the topics is tackled with techniques and ideas coming from another. The book will be of interest for specialists in Complex Analysis, Function and Operator theory, Approximation theory, and their applications, but also for young people starting their research in these areas.




Selected Works of Oded Schramm


Book Description

This volume is dedicated to the memory of the late Oded Schramm (1961-2008), distinguished mathematician. Throughout his career, Schramm made profound and beautiful contributions to mathematics that will have a lasting influence. In these two volumes, Editors Itai Benjamini and Olle Häggström have collected some of his papers, supplemented with three survey papers by Steffen Rohde, Häggström and Cristophe Garban that further elucidate his work. The papers within are a representative collection that shows the breadth, depth, enthusiasm and clarity of his work, with sections on Geometry, Noise Sensitivity, Random Walks and Graph Limits, Percolation, and finally Schramm-Loewner Evolution. An introduction by the Editors and a comprehensive bibliography of Schramm's publications complete the volume. The book will be of especial interest to researchers in probability and geometry, and in the history of these subjects.







Analysis


Book Description

Providing an introduction to real analysis, this text is suitable for honours undergraduates. It starts at the very beginning - the construction of the number systems and set theory, then to the basics of analysis, through to power series, several variable calculus and Fourier analysis, and finally to the Lebesgue integral.




Theorems of the 21st Century


Book Description

This book consists of short descriptions of 106 mathematical theorems, which belong to the great achievements of 21st century mathematics but require relatively little mathematical background to understand their formulation and appreciate their importance. The selected theorems of this volume, chosen from the famous Annals of Mathematics journal, cover a broad range of topics from across mathematics. Each theorem description is essentially self-contained, can be read independently of the others, and requires as little preliminary knowledge as possible. Although the sections often start with an informal discussion and toy examples, all the necessary definitions are included and each description culminates in the precise formulation of the corresponding theorem. Filling the gap between surveys written for mathematicians and popular mathematics, this book is intended for readers with a keen interest in contemporary mathematics.




Brownian Motion


Book Description

This eagerly awaited textbook covers everything the graduate student in probability wants to know about Brownian motion, as well as the latest research in the area. Starting with the construction of Brownian motion, the book then proceeds to sample path properties like continuity and nowhere differentiability. Notions of fractal dimension are introduced early and are used throughout the book to describe fine properties of Brownian paths. The relation of Brownian motion and random walk is explored from several viewpoints, including a development of the theory of Brownian local times from random walk embeddings. Stochastic integration is introduced as a tool and an accessible treatment of the potential theory of Brownian motion clears the path for an extensive treatment of intersections of Brownian paths. An investigation of exceptional points on the Brownian path and an appendix on SLE processes, by Oded Schramm and Wendelin Werner, lead directly to recent research themes.




What's Happening in the Mathematical Sciences


Book Description

Mathematicians like to point out that mathematics is universal. In spite of this, most people continue to view it as either mundane (balancing a checkbook) or mysterious (cryptography). This fifth volume of the What's Happening series contradicts that view by showing that mathematics is indeed found everywhere-in science, art, history, and our everyday lives. Here is some of what you'll find in this volume: Mathematics and Science Mathematical biology: Mathematics was key tocracking the genetic code. Now, new mathematics is needed to understand the three-dimensional structure of the proteins produced from that code. Celestial mechanics and cosmology: New methods have revealed a multitude of solutions to the three-body problem. And other new work may answer one of cosmology'smost fundamental questions: What is the size and shape of the universe? Mathematics and Everyday Life Traffic jams: New models are helping researchers understand where traffic jams come from-and maybe what to do about them! Small worlds: Researchers have found a short distance from theory to applications in the study of small world networks. Elegance in Mathematics Beyond Fermat's Last Theorem: Number theorists are reaching higher ground after Wiles' astounding 1994 proof: new developments inthe elegant world of elliptic curves and modular functions. The Millennium Prize Problems: The Clay Mathematics Institute has offered a million dollars for solutions to seven important and difficult unsolved problems. These are just some of the topics of current interest that are covered in thislatest volume of What's Happening in the Mathematical Sciences. The book has broad appeal for a wide spectrum of mathematicians and scientists, from high school students through advanced-level graduates and researchers.