Self-Driving Car Simulation using Adaboost-CNN Algorithm


Book Description

Project Report from the year 2017 in the subject Engineering - Automotive Engineering, grade: 2.00, International Islamic University Malaysia, course: CSC 3304: Machine Learning, language: English, abstract: People spend hours to drive their car from place to place. What if a person sets its destination and goes to sleep while the car drives itself to the destination? It will save plenty of time. Tesla already started selling autopilot cars. Though the car can drive itself but is trustable only in certain quality roads. This means, research should still be carried out in self driving car project. All of the existing self-driving car simulation projects used Convolutional Neural Network as learning method. Though Adaboost is mostly used with binary classification problem, a variant can be developed to adapt Adaboost with Convolutional Neural Network.




Person Re-Identification


Book Description

The first book of its kind dedicated to the challenge of person re-identification, this text provides an in-depth, multidisciplinary discussion of recent developments and state-of-the-art methods. Features: introduces examples of robust feature representations, reviews salient feature weighting and selection mechanisms and examines the benefits of semantic attributes; describes how to segregate meaningful body parts from background clutter; examines the use of 3D depth images and contextual constraints derived from the visual appearance of a group; reviews approaches to feature transfer function and distance metric learning and discusses potential solutions to issues of data scalability and identity inference; investigates the limitations of existing benchmark datasets, presents strategies for camera topology inference and describes techniques for improving post-rank search efficiency; explores the design rationale and implementation considerations of building a practical re-identification system.




Road Vehicle Automation 3


Book Description

This edited book comprises papers about the impacts, benefits and challenges of connected and automated cars. It is the third volume of the LNMOB series dealing with Road Vehicle Automation. The book comprises contributions from researchers, industry practitioners and policy makers, covering perspectives from the U.S., Europe and Japan. It is based on the Automated Vehicles Symposium 2015 which was jointly organized by the Association of Unmanned Vehicle Systems International (AUVSI) and the Transportation Research Board (TRB) in Ann Arbor, Michigan, in July 2015. The topical spectrum includes, but is not limited to, public sector activities, human factors, ethical and business aspects, energy and technological perspectives, vehicle systems and transportation infrastructure. This book is an indispensable source of information for academic researchers, industrial engineers and policy makers interested in the topic of road vehicle automation.




Automated Driving


Book Description

The main topics of this book include advanced control, cognitive data processing, high performance computing, functional safety, and comprehensive validation. These topics are seen as technological bricks to drive forward automated driving. The current state of the art of automated vehicle research, development and innovation is given. The book also addresses industry-driven roadmaps for major new technology advances as well as collaborative European initiatives supporting the evolvement of automated driving. Various examples highlight the state of development of automated driving as well as the way forward. The book will be of interest to academics and researchers within engineering, graduate students, automotive engineers at OEMs and suppliers, ICT and software engineers, managers, and other decision-makers.




Smart Infrastructure and Applications


Book Description

This book provides a multidisciplinary view of smart infrastructure through a range of diverse introductory and advanced topics. The book features an array of subjects that include: smart cities and infrastructure, e-healthcare, emergency and disaster management, Internet of Vehicles, supply chain management, eGovernance, and high performance computing. The book is divided into five parts: Smart Transportation, Smart Healthcare, Miscellaneous Applications, Big Data and High Performance Computing, and Internet of Things (IoT). Contributions are from academics, researchers, and industry professionals around the world. Features a broad mix of topics related to smart infrastructure and smart applications, particularly high performance computing, big data, and artificial intelligence; Includes a strong emphasis on methodological aspects of infrastructure, technology and application development; Presents a substantial overview of research and development on key economic sectors including healthcare and transportation.




Computer Vision -- ECCV 2014


Book Description

The seven-volume set comprising LNCS volumes 8689-8695 constitutes the refereed proceedings of the 13th European Conference on Computer Vision, ECCV 2014, held in Zurich, Switzerland, in September 2014. The 363 revised papers presented were carefully reviewed and selected from 1444 submissions. The papers are organized in topical sections on tracking and activity recognition; recognition; learning and inference; structure from motion and feature matching; computational photography and low-level vision; vision; segmentation and saliency; context and 3D scenes; motion and 3D scene analysis; and poster sessions.




Machine Learning, Optimization, and Data Science


Book Description

This book constitutes the post-conference proceedings of the 5th International Conference on Machine Learning, Optimization, and Data Science, LOD 2019, held in Siena, Italy, in September 2019. The 54 full papers presented were carefully reviewed and selected from 158 submissions. The papers cover topics in the field of machine learning, artificial intelligence, reinforcement learning, computational optimization and data science presenting a substantial array of ideas, technologies, algorithms, methods and applications.




Machine Learning and Metaheuristics Algorithms, and Applications


Book Description

This book constitutes the refereed proceedings of the First Symposium on Machine Learning and Metaheuristics Algorithms, and Applications, SoMMA 2019, held in Trivandrum, India, in December 2019. The 17 full papers and 6 short papers presented in this volume were thoroughly reviewed and selected from 53 qualified submissions. The papers cover such topics as machine learning, artificial intelligence, Internet of Things, modeling and simulation, disctibuted computing methodologies, computer graphics, etc.




All of Statistics


Book Description

Taken literally, the title "All of Statistics" is an exaggeration. But in spirit, the title is apt, as the book does cover a much broader range of topics than a typical introductory book on mathematical statistics. This book is for people who want to learn probability and statistics quickly. It is suitable for graduate or advanced undergraduate students in computer science, mathematics, statistics, and related disciplines. The book includes modern topics like non-parametric curve estimation, bootstrapping, and classification, topics that are usually relegated to follow-up courses. The reader is presumed to know calculus and a little linear algebra. No previous knowledge of probability and statistics is required. Statistics, data mining, and machine learning are all concerned with collecting and analysing data.




Machine Learning and Metaheuristics Algorithms, and Applications


Book Description

This book constitutes the refereed proceedings of the Second Symposium on Machine Learning and Metaheuristics Algorithms, and Applications, SoMMA 2020, held in Chennai, India, in October 2020. Due to the COVID-19 pandemic the conference was held online. The 12 full papers and 7 short papers presented in this volume were thoroughly reviewed and selected from 40 qualified submissions. The papers cover such topics as machine learning, artificial intelligence, Internet of Things, modeling and simulation, disctibuted computing methodologies, computer graphics, etc.