Self-healing Materials


Book Description

The series Advances in Polymer Science presents critical reviews of the present and future trends in polymer and biopolymer science. It covers all areas of research in polymer and biopolymer science including chemistry, physical chemistry, physics, material science. The thematic volumes are addressed to scientists, whether at universities or in industry, who wish to keep abreast of the important advances in the covered topics. Advances in Polymer Science enjoys a longstanding tradition and good reputation in its community. Each volume is dedicated to a current topic, and each review critically surveys one aspect of that topic, to place it within the context of the volume. The volumes typically summarize the significant developments of the last 5 to 10 years and discuss them critically, presenting selected examples, explaining and illustrating the important principles, and bringing together many important references of primary literature. On that basis, future research directions in the area can be discussed. Advances in Polymer Science volumes thus are important references for every polymer scientist, as well as for other scientists interested in polymer science - as an introduction to a neighboring field, or as a compilation of detailed information for the specialist. Review articles for the individual volumes are invited by the volume editors. Single contributions can be specially commissioned. Readership: Polymer scientists, or scientists in related fields interested in polymer and biopolymer science, at universities or in industry, graduate students




Self-Healing Phenomena in Cement-Based Materials


Book Description

Self-healing materials are man-made materials which have the built-in capability to repair damage. Failure in materials is often caused by the occurrence of small microcracks throughout the material. In self-healing materials phenomena are triggered to counteract these microcracks. These processes are ideally triggered by the occurrence of damage itself. Thus far, the self-healing capacity of cement-based materials has been considered as something "extra". This could be called passive self-healing, since it was not a designed feature of the material, but an inherent property of it. Centuries-old buildings have been said to have survived these centuries because of the inherent self-healing capacity of the binders used for cementing building blocks together. In this State-of-the-Art Report a closer look is taken at self-healing phenomena in cement-based materials. It is shown what options are available to design for this effect rather than have it occur as a "coincidental extra".




New Materials in Civil Engineering


Book Description

New Materials in Civil Engineering provides engineers and scientists with the tools and methods needed to meet the challenge of designing and constructing more resilient and sustainable infrastructures. This book is a valuable guide to the properties, selection criteria, products, applications, lifecycle and recyclability of advanced materials. It presents an A-to-Z approach to all types of materials, highlighting their key performance properties, principal characteristics and applications. Traditional materials covered include concrete, soil, steel, timber, fly ash, geosynthetic, fiber-reinforced concrete, smart materials, carbon fiber and reinforced polymers. In addition, the book covers nanotechnology and biotechnology in the development of new materials. - Covers a variety of materials, including fly ash, geosynthetic, fiber-reinforced concrete, smart materials, carbon fiber reinforced polymer and waste materials - Provides a "one-stop resource of information for the latest materials and practical applications - Includes a variety of different use case studies




Self-Sensing Concrete in Smart Structures


Book Description

Concrete is the second most used building material in the world after water. The problem is that over time the material becomes weaker. As a response, researchers and designers are developing self-sensing concrete which not only increases longevity but also the strength of the material. Self-Sensing Concrete in Smart Structures provides researchers and designers with a guide to the composition, sensing mechanism, measurement, and sensing properties of self-healing concrete along with their structural applications - Provides a systematic discussion of the structure of intrinsic self-sensing concrete - Compositions of intrinsic self-sensing concrete and processing of intrinsic self-sensing concrete - Explains the sensing mechanism, measurement, and sensing properties of intrinsic self-sensing concrete




Cementitious Materials


Book Description

Aside from water the materials which are used by mankind in highest quantities arecementitious materials and concrete. This book shows how the quality of the technical product depends on mineral phases and their reactions during the hydration and strengthening process. Additives and admixtures infl uence the course of hydration and the properties. Options of reducing the CO2-production in cementitious materials are presented and numerous examples of unhydrous and hydrous phases and their formation conditions are discussed. This editorial work consists of four parts including cement composition and hydration, Special cement and binder mineral phases, Cementitious and binder materials, and Measurement and properties. Every part contains different contributions and covers a broad range within the area. Contents Part I: Cement composition and hydration Diffraction and crystallography applied to anhydrous cements Diffraction and crystallography applied to hydrating cements Synthesis of highly reactive pure cement phases Thermodynamic modelling of cement hydration: Portland cements – blended cements – calcium sulfoaluminate cements Part II: Special cement and binder mineral phases Role of hydrotalcite-type layered double hydroxides in delayed pozzolanic reactions and their bearing on mortar dating Setting control of CAC by substituted acetic acids and crystal structures of their calcium salts Crystallography and crystal chemistry of AFm phases related to cement chemistry Part III: Cementitious and binder materials Chemistry, design and application of hybrid alkali activated binders Binding materials based on calcium sulphates Magnesia building material (Sorel cement) – from basics to application New CO2-reduced cementitious systems Composition and properties of ternary binders Part IV: Measurement and properties Characterization of microstructural properties of Portland cements by analytical scanning electron microscopy Correlating XRD data with technological properties No cement production without refractories




Eco-efficient Repair and Rehabilitation of Concrete Infrastructures


Book Description

Eco-efficient Repair and Rehabilitation of Concrete Infrastructures, Second Edition provides an updated state-of-the-art review on the latest advances in this important research field. The first section is brought fully up-to-date and focuses on deterioration assessment methods. Section two contains brand new chapters on innovative concrete repair and rehabilitation materials including: fly ash-based alkali-activated repair materials for concrete exposed to aggressive environments; repairing concrete structures with alkali-activated metakaolin mortars; concrete with micro encapsulated self-healing materials; concrete repaired with bacteria; concrete structures repaired with engineered cementitious composites; concrete repaired by electrodeposition; the assessment of concrete after repair operations and durability of concrete repair. The final section has also been amended to include six new chapters on design, Life-cycle cost analysis and life-cycle assessment. These chapters include maintenance strategies for concrete structures; a comparison of different repair methods; life cycle assessment of the effects of climate change on bridge deterioration; life-cycle-cost benefits of cathodic protection of concrete structures; life-cycle cost analyses for concrete bridges exposed to chlorides and life-cycle analysis of repair of concrete pavements. The book will be an essential reference resource for materials scientists, civil and structural engineers, architects, structural designers and contractors working in the construction industry. - Presents the latest research findings on eco-efficient repair and rehabilitation of concrete infrastructures - Provides comprehensive coverage from damage detection and assessment, to repair strategies, and structural health monitoring - Diverse author base offering insights on construction practice and employed technologies worldwide - Includes a section on innovative repair and rehabilitation materials, as well as case studies on life cycle cost analysis and LCA




Self-Healing Construction Materials


Book Description

This book provides a thorough overview of all techniques for producing self-healing construction materials. Construction materials (cement-based, bituminous, metals, and alloys) are prone to cracking, which with the progress of time can lead to compromising of the structural integrity of critical infrastructure. Self-healing materials form a new class of materials that have inbuilt engineered properties to counteract damage and repair it before it becomes critical. The methods for monitoring, modeling, and assessing self-healing are also reviewed. The final section of the book discusses the future outlook and potential extension of self-healing concepts to other materials (e.g., heritage structures and soils).




Self-healing Materials


Book Description

The book covers self-healing concepts for all important material classes and their applications: polymers, ceramics, non-metallic and metallic coatings, alloys, nanocomposites, concretes and cements, as well as ionomers. Beginning with the inspiration from biological self-healing, its mimickry and conceptual transfer into approaches for the self-repair of artificially created materials, this book explains the strategies and mechanisms for the readers' basic understanding, then covers the different material classes and suitable self-healing concepts, giving examples for their application in practical situations. As the first book in this swiftly growing research field, it is of great interest to readers from many scientific and engineering disciplines, such as physics and chemistry, civil, architectural, mechanical, electronics and aerospace engineering.




Self-Healing Smart Materials


Book Description

This comprehensive book describes the design, synthesis, mechanisms, characterization, fundamental properties, functions and development of self-healing smart materials and their composites with their allied applications. It covers cementitious concrete composites, bleeding composites, elastomers, tires, membranes, and composites in energy storage, coatings, shape-memory, aerospace and robotic applications. The 21 chapters are written by researchers from a variety of disciplines and backgrounds.




Self Healing Materials


Book Description

In 2006 the Dutch government funded an 8 year and 20 million euro research program on Self Healing Materials. The research was not to be restricted to one material class or one particular healing approach. It was to explore all opportunities to create self healing behavior in engineering and functional materials and to bring the new materials to a level where they could be tested in real life applications. At its launch, the IOP program was the very first integrated multi-material approach to this field in the world. The research was to be conducted at Dutch universities working in collaboration with industry. With the IOP Self Healing Materials program coming to an end, this book presents the highlights of the pioneering research in the field of self healing materials in the Netherlands. Given the diversity of topics addressed, the book will be of value to all materials scientists working in the field of materials and materials by design in particular, as well as industrial engineers and developers with an interest in increasing the reliability and reducing the maintenance of their products. The book will also be an inspiration to students and show them how an unspecified concept of self healing can be translated to new materials with exceptional behavior.