Self-Organized Organic Semiconductors


Book Description

This book focuses on the exciting topic on self-organized organic semiconductors – from materials to device applications. It offers up-to-date and accessible coverage of self-organized semiconductors for organic chemistry, polymer science, liquid crystals, materials science, material engineering, electrical engineering, chemical engineering, optics, optic-electronics, nanotechnology and semiconductors. Chapters cover chemistry, physics, processing, and characterization. The applications include photovoltaics, light-emitting diodes (LEDs), and transistors.




Selforganizology: The Science Of Self-organization


Book Description

This invaluable book is the first of its kind on 'selforganizology', the science of self-organization. It covers a wide range of topics, such as the theory, principle and methodology of selforganizology, agent-based modelling, intelligence basis, ant colony optimization, fish/particle swarm optimization, cellular automata, spatial diffusion models, evolutionary algorithms, self-adaptation and control systems, self-organizing neural networks, catastrophe theory and methods, and self-organization of biological communities, etc.Readers will have an in-depth and comprehensive understanding of selforganizology, with detailed background information provided for those who wish to delve deeper into the subject and explore research literature.This book is a valuable reference for research scientists, university teachers, graduate students and high-level undergraduates in the areas of computational science, artificial intelligence, applied mathematics, engineering science, social science and life sciences.




Prebiological Self Organization of Matter


Book Description

"The motions of the cosmic bodies, the laws of chemistry and physics, the orchestration of the parts of a living cell, the existence of animal societies, and the notion of order conceived by our minds impresses on us that our Universe has a tendency to form interacting and cooperative organizations. Yet, of all levels of ordering, we know next to nothing about the chemical processes that became self-maintaining and self-replicating, i.e., became alive. This Colloquium, arranged so that a number of workers in Chemical Evolution may present and discuss their views and their research, will consist of four sessions: 1) on the systems and conditions that will allow self-organization; 2) and 3) concerning the same kind of molecules that are at the center of the life processes today, there will be talks on the self-organization of peptides and nucleotides. In session 4) we will hear of the probability that life needed to become organized within the boundaries of a cell. Together with the recent COSPAR sessions on the "Minimal Requirements for the Emergence of Life" and on "The Limits of Life," the Transactions of this Colloquium should represent a substantial part of the State of the Art."--




BIOLOGICAL SCIENCE FUNDAMENTALS AND SYSTEMATICS - Volume I


Book Description

Biological Science Fundamentals and Systematics is a component of Encyclopedia of Biological, Physiological and Health Sciences in the global Encyclopedia of Life Support Systems (EOLSS), which is an integrated compendium of twenty one Encyclopedias. The Theme on Biological Science Fundamentals and Systematics provides the essential aspects and a myriad of issues of great relevance to our world such as: History and Scope of Biological Sciences; The Origin and Evolution of Early Life; Evolution; Classification and Diversity of Life Forms; Systematics of Microbial Kingdom (s) and Fungi; Systematic Botany; Systematic Zoology: Invertebrates; Systematic Zoology: Vertebrates which are then expanded into multiple subtopics, each as a chapter. These four volumes are aimed at the following five major target audiences: University and College students Educators, Professional practitioners, Research personnel and Policy analysts, managers, and decision makers and NGOs.




The Origins of Order


Book Description

Stuart Kauffman here presents a brilliant new paradigm for evolutionary biology, one that extends the basic concepts of Darwinian evolution to accommodate recent findings and perspectives from the fields of biology, physics, chemistry and mathematics. The book drives to the heart of the exciting debate on the origins of life and maintenance of order in complex biological systems. It focuses on the concept of self-organization: the spontaneous emergence of order that is widely observed throughout nature Kauffman argues that self-organization plays an important role in the Darwinian process of natural selection. Yet until now no systematic effort has been made to incorporate the concept of self-organization into evolutionary theory. The construction requirements which permit complex systems to adapt are poorly understood, as is the extent to which selection itself can yield systems able to adapt more successfully. This book explores these themes. It shows how complex systems, contrary to expectations, can spontaneously exhibit stunning degrees of order, and how this order, in turn, is essential for understanding the emergence and development of life on Earth. Topics include the new biotechnology of applied molecular evolution, with its important implications for developing new drugs and vaccines; the balance between order and chaos observed in many naturally occurring systems; new insights concerning the predictive power of statistical mechanics in biology; and other major issues. Indeed, the approaches investigated here may prove to be the new center around which biological science itself will evolve. The work is written for all those interested in the cutting edge of research in the life sciences.




Atomic and Nanometer-Scale Modification of Materials


Book Description

This volume contains the proceedings of the conference on "Atomic and Nanometer Scale Modification of Materials: Fundamentals and Applications" which was co-sponsored by NATO and the Engineering Foundation, and took place in Ventura, California in August 1992. The goal of the organizers was to bring together and facilitate the exchange of information and ideas between researchers involved in the development of techniques for nanometer-scale modification and manipulation. theorists investigating the fundamental mech anisms of the processes involved in modification, and scientists studying the properties and applications of nanostructures. About seventy scientists from all over the world participated in the conference. It has been more than 30 years since Richard Feynman wrote his prophetic article: ''There is Plenty of Room at the Bottom" (Science and Engineering, 23, 22, 1960). In it he predicted that some day we should be able to store bits of information in structures composed of only 100 atoms or so, and thus be able to write all the information accumulated in all the books in the world in a cube of material one two-hundredths of an inch high. He went on to say, "the prin ciples of physics, as far as I can see, do not speak against the possibility of maneuvering things atom by atom. " Since that time there has been significant progress towards the realization of Feynman's dreams.




Metal-Organic and Organic Molecular Magnets


Book Description

Traditionally, magnetic materials have been metals or, if inorganic compounds such as oxides, of continuous lattice type. However, in recent years chemists have synthesized increasing numbers of crystalline solids based on molecular building blocks in the form of coordination and organometallic complexes or purely organic molecules, which exhibit spontaneous magnetization. In striking contrast to conventional magnets, these materials are made from solutions close to room temperature rather than by metallurgical or ceramic methods. This book, which originates from contributions to a Discussion Meeting of The Royal Society of London, brings together many of the leading international practitioners in the field, who survey their own recent work and place it in the context of the wider fields of magnetism and supramolecular chemistry. All aspects of molecular-based magnets are addressed, including synthesis, structure-property relations and physical properties. Contents include details of the characterization of the first purely organic ferromagnet, the synthesis of high coercivity materials and a unique description of new materials with Curie temperatures well above ambient. A coherent survey of this rapidly developing field for the more general reader, Metal-Organic and Organic Molecular Magnets will also be welcomed by researchers and lecturers in materials science and inorganic or solid state chemistry.




Molecular Nano Dynamics


Book Description

From artificial surfaces to living cells, Molecular Nano Dynamics, Vol. I and Vol. II explores more than 40 important methods for dynamic observation of the nanoscale. Edited by absolute science greats from Japan, this two-volume set covers all important aspects of this topic: nanoscale spectroscopy and characterization tools, nanostructure dynamics, single living cell dynamics, active surfaces, and single crystals. Destined to be the definitive reference work on nanoscale molecular dynamics and their observation for years to come, this is a must-have reference for chemists, physicists, physical chemists, theoretical chemists, and materials scientists.




Quantum Mechanics for Nanostructures


Book Description

Textbook introducing engineers to quantum mechanics and nanostructures, covering the fundamentals and applications to nanoscale materials and nanodevices.




Fundamentals of Geobiology


Book Description

2012 PROSE Award, Earth Science: Honorable Mention For more than fifty years scientists have been concerned with the interrelationships of Earth and life. Over the past decade, however, geobiology, the name given to this interdisciplinary endeavour, has emerged as an exciting and rapidly expanding field, fuelled by advances in molecular phylogeny, a new microbial ecology made possible by the molecular revolution, increasingly sophisticated new techniques for imaging and determining chemical compositions of solids on nanometer scales, the development of non-traditional stable isotope analyses, Earth systems science and Earth system history, and accelerating exploration of other planets within and beyond our solar system. Geobiology has many faces: there is the microbial weathering of minerals, bacterial and skeletal biomineralization, the roles of autotrophic and heterotrophic metabolisms in elemental cycling, the redox history in the oceans and its relationship to evolution and the origin of life itself.. This book is the first to set out a coherent set of principles that underpin geobiology, and will act as a foundational text that will speed the dissemination of those principles. The chapters have been carefully chosen to provide intellectually rich but concise summaries of key topics, and each has been written by one or more of the leading scientists in that field.. Fundamentals of Geobiology is aimed at advanced undergraduates and graduates in the Earth and biological sciences, and to the growing number of scientists worldwide who have an interest in this burgeoning new discipline. Additional resources for this book can be found at: http://www.wiley.com/go/knoll/geobiology.