Self Organized Nanostructures of Amphiphilic Block Copolymers II


Book Description

Block Copolymer Surfactant Mixtures in Aqueous Solution: Can we Achieve Size and Shape Control by Co-Micellization?, by Thomas Hellweg; Non-ionic Thermoresponsive Polymers in Water, by Vladimir Aseyev, Heikki Tenhu and Françoise Winnik; From Coordination Polymers to Hierarchical Self-Assembled Structures, by Yun Yan, Arie de Keizer, Martien A. Cohen Stuart and Nicolaas A. M. Besseling; Processes of Ordered Structure Formation in Polypeptide Thin Film Solutions, by Ioan Botiz, Helmut Schlaad and Günter Reiter; Amphiphilic Polymers at Interfaces, by Katarzyna Kita-Tokarczyk, Mathias Junginger, Serena Belegrinou and Andreas Taubert;




Self Organized Nanostructures of Amphiphilic Block Copolymers I


Book Description

Conformations and Solution Properties of Star-Branched Polyelectrolytes, by Oleg V. Borisov, Ekaterina B. Zhulina, Frans A. M. Leermakers, Matthias Ballauff and Axel H. E. Müller; Self-Assembled Structures of Amphiphilic Ionic Block Copolymers: Theory, Self-Consistent Field Modeling and Experiment, by Oleg V. Borisov, Ekaternia B. Zhulina, Frans A. M. Leermakers and Axel H. E. Müller; Interpolyelectrolyte Complexes Based on Polyionic Species of Branched Topology, by Dmitry V. Pergushov, Oleg V. Borisov, Alexander B. Zezin and Axel H. E. Müller; Co-assembly of Charged Copolymers as a Novel Pathway Towards Reversible Janus Micelles, by Ilja K. Voets, Frans A. Leermakers, Arie de Keizer, Marat Charlaganov and Martien A. Cohen Stuart; Fluorescence Spectroscopy as a Tool for Investigating the Self-Organized Polyelectrolyte Systems, by Karel Procházka, Zuzana Limpouchová, Filip Uhlík, Peter Košovan, Pavel Matejícek, Miroslav Štepánek, Mariusz Uchman, Jitka Kuldová, Radek Šachl, Jana Humpolícková, and M. Hof




Self Organized Nanostructures of Amphiphilic Block Copolymers I


Book Description

Conformations and Solution Properties of Star-Branched Polyelectrolytes, by Oleg V. Borisov, Ekaterina B. Zhulina, Frans A. M. Leermakers, Matthias Ballauff and Axel H. E. Müller; Self-Assembled Structures of Amphiphilic Ionic Block Copolymers: Theory, Self-Consistent Field Modeling and Experiment, by Oleg V. Borisov, Ekaternia B. Zhulina, Frans A. M. Leermakers and Axel H. E. Müller; Interpolyelectrolyte Complexes Based on Polyionic Species of Branched Topology, by Dmitry V. Pergushov, Oleg V. Borisov, Alexander B. Zezin and Axel H. E. Müller; Co-assembly of Charged Copolymers as a Novel Pathway Towards Reversible Janus Micelles, by Ilja K. Voets, Frans A. Leermakers, Arie de Keizer, Marat Charlaganov and Martien A. Cohen Stuart; Fluorescence Spectroscopy as a Tool for Investigating the Self-Organized Polyelectrolyte Systems, by Karel Procházka, Zuzana Limpouchová, Filip Uhlík, Peter Košovan, Pavel Matejícek, Miroslav Štepánek, Mariusz Uchman, Jitka Kuldová, Radek Šachl, Jana Humpolícková, and M. Hof




Amphiphilic Block Copolymers


Book Description

It is the belief of the editors of this book that the recognition of block copolymers as being amphiphilic molecules and sharing common features with other well-studied amphiphiles will prove beneficial to both the surfactant and the polymer communities. An aim of this book is to bridge the two communities and cross-fertilise the different fields. To this end, leading researchers in the field of amphiphilic block copolymer self-assembly, some having a background in surfactant chemistry, and others with polymer physics roots, have agreed to join forces and contribute to this book.The book consists of four entities. The first part discusses theoretical considerations behind the block copolymer self-assembly in solution and in the melt. The second part provides case studies of self-assembly in different classes of block copolymers (e.g., polyethers, polyelectrolytes) and in different environments (e.g., in water, in non-aqueous solvents, or in the absence of solvents). The third part presents experimental tools, ranging from static (e.g., small angle neutron scattering) to dynamic (e.g., rheology), which can prove valuable in the characterization of block copolymer self-assemblies. The fourth part offers a sampling of current applications of block copolymers in, e.g., formulations, pharmaceutics, and separations, applications which are based on the unique self-assembly properties of block copolymers.




Chitosan for Biomaterials I


Book Description

Polymeric Nanoparticles of Chitosan Derivatives as DNA and siRNA Carriers, by Y. K. Kim, H. L. Jiang, Y. J. Choi, I. K. Park, M. H. Cho and C. S. Cho.- Chitosan and Its Derivatives for Drug Delivery Perspective, by T. A. Sonia and C. P. Sharma.- Chitosan-based Nanoparticles in Cancer Therapy, by V.-K. Lakshmanan, K. S. Snima, J. D. Bumgardner, S. V. Nair, and R. Jayakumar.- Chitosan and Thiolated Chitosan, by F. Sarti and A. Bernkop-Schnürch.- Chitosan-Based Particulate Systems for Non-Invasive Vaccine Delivery, by S. Şenel.- Multifunctional Chitosan Nanoparticles for Tumor Imaging and Therapy, by J. Y. Yhee, Heebeom Koo, Dong Eun Lee, Kuiwon Choi, Ick Chan Kwon and Kwangmeyung Kim.- Chitosan-Coated Iron Oxide Nanoparticles for Molecular Imaging and Drug Delivery, by H. Arami, Z. Stephen, O. Veiseh and M. Zhang.- Chitosan: Its Applications in Drug-Eluting Devices, by Mei -Chin Chen, Fwu -Long Mi, Zi -Xian Liao and Hsing -Wen Sung.-




Mass Spectrometry of Polymers – New Techniques


Book Description

Emerging Mass Spectrometric Tools for Analysis of Polymers and Polymer Additives, by Nina Aminlashgari and Minna Hakkarainen. Analysis of Polymer Additives and Impurities by Liquid Chromatography/Mass Spectrometry and Capillary Electrophoresis/Mass Spectrometry, by Wolfgang Buchberger and Martin Stiftinger. Direct Insertion Probe Mass Spectrometry of Polymers, by Jale Hacaloglu Mass Spectrometric Characterization of Oligo- and Polysaccharides and Their Derivatives, by Petra Mischnick. Electrospray Ionization-Mass Spectrometry for Molecular Level Understanding of Polymer Degradation, by Minna Hakkarainen.




Synthetic Biodegradable Polymers


Book Description

Salen Metal Complexes as Catalysts for the Synthesis of Polycarbonates from Cyclic Ethers and Carbon Dioxide, by Donald J. Darensbourg.- Material Properties of Poly(Propylene Carbonates), by Gerrit. A. Luinstra and Endres Borchardt.- Poly(3-Hydroxybutyrate) from Carbon Monoxide, by Robert Reichardt and Bernhard Rieger. - Ecoflex® and Ecovio®: Biodegradable, Performance-Enabling Plastics, by K. O. Siegenthaler, A. Künkel, G. Skupin and M. Yamamoto.- Biodegradability of Poly(Vinyl Acetate) and Related Polymers, by Manfred Amann and Oliver Minge.- Recent Developments in Ring-Opening Polymerization of Lactones, by P. Lecomte and C. Jérôme.- Recent Developments in Metal-Catalyzed Ring-Opening Polymerization of Lactides and Glycolides: Preparation of Polylactides, Polyglycolide, and Poly(lactide-co-glycolide), by Saikat Dutta, Wen-Chou Hung, Bor-Hunn Huang and Chu-Chieh Lin.- Bionolle (Polybutylenesuccinate), by Yasushi Ichikawa, Tatsuya Mizukoshi.- Polyurethanes from Renewable Resources, by David A. Babb.-




Polymers in Nanomedicine


Book Description

Functional Polymer Conjugates for Medicinal Nucleic Acid Delivery, by Ernst Wagner Biodegradable Nanoparticles as Vaccine Adjuvants and Delivery Systems: Regulation of Immune Responses by Nanoparticle-Based Vaccine, by Takami Akagi, Masanori Baba and Mitsuru Akashi Biodegradable Polymeric Assemblies for Biomedical Materials, by Yuichi Ohya, Akihiro Takahashi and Koji Nagahama PEGylation Technology in Nanomedicine, by Yutaka Ikeda and Yukio Nagasaki Cytocompatible Hydrogel Composed of Phospholipid Polymers for Regulation of Cell Functions, by Kazuhiko Ishihara, Yan Xu and Tomohiro Konno Design of Biointerfaces for Regenerative Medicine, by Yusuke Arima, Koichi Kato, Yuji Teramura and Hiroo Iwata Advances in Tissue Engineering Approaches to Treatment of Intervertebral Disc Degeneration: Cells and Polymeric Scaffolds for Nucleus Pulposus Regeneration, by Jeremy J. Mercuri and Dan T. Simionescu Functionalized Biocompatible Nanoparticles for Site-Specific Imaging and Therapeutics, by Ranu K. Dutta, Prashant K. Sharma, Hisatoshi Kobayashi and Avinash C. Pandey




Biomedical Applications of Polymeric Nanofibers


Book Description

Multiscale Fibrous Scaffolds in Regenerative Medicine, by Sowmya Srinivasan, R. Jayakumar, K. P. Chennazhi, Erica J. Levorson, Antonios G. Mikos and Shantikumar V. Nair; Stem Cells and Nanostructures for Advanced Tissue Regeneration, by Molamma P. Prabhakaran, J. Venugopal, Laleh Ghasemi-Mobarakeh, Dan Kai Guorui Jin and Seeram Ramakrishna; Creating Electrospun Nanofiber-Based Biomimetic Scaffolds for Bone Regeneration, by Eleni Katsanevakis, Xuejun Wen and Ning Zhang; Synthetic/Biopolymer Nanofibrous Composites as Dynamic Tissue Engineering Scaffolds, by J. A. Kluge and R. L. Mauck; Electrospun Fibers as Substrates for Peripheral Nerve Regeneration, by Jörg Mey, Gary Brook, Dorothée Hodde and Andreas Kriebel; Highly Aligned Polymer Nanofiber Structures: Fabrication and Applications in Tissue Engineering, by Vince Beachley, Eleni Katsanevakis, Ning Zhang, Xuejun Wen; Electrospinning of Biocompatible Polymers and Their Potentials in Biomedical Applications, by Pitt Supaphol, Orawan Suwantong, Pakakrong Sangsanoh, Sowmya Srinivasan, Rangasamy Jayakumar and Shantikumar V. Nair; Electrospun Nanofibrous Scaffolds-Current Status and Prospects in Drug Delivery, by M. Prabaharan, R. Jayakumar and S. V. Nair.; Biomedical Applications of Polymer/Silver Composite Nanofibers, by R. Jayakumar, M. Prabaharan, K. T. Shalumon, K. P. Chennazhi and S. V. Nair.-




Chitosan for Biomaterials II


Book Description

Polymeric Bionanocomposites as Promising Materials for Controlled Drug, by M. Prabaharan, R. Jayakumar; Chitosan and Chitosan Derivatives in Drug Delivery and Tissue Engineering, by R. Riva, H. Ragelle, A. des Rieux, N. Duhem, C. Jérôme, and V. Préat; Chitosan: A Promising Biomaterial for Tissue Engineering Scaffolds, by P. K. Dutta, K. Rinki and J. Dutta; Chitosan-Based Biomaterials for Tissue Repair and Regeneration, by X. Liu, L. Ma, Z. Mao and C. Gao; Use of Chitosan as a Bioactive Implant Coating for Bone-Implant Applications, by M. R. Leedy, H. J. Martin, P. A. Norowski, J. A. Jennings, W. O. Haggard, and J.D. Bumgardner; New Techniques for Optimization of Surface Area and Porosity in Nanochitins and Nanochitosans, by R. A. A. Muzzarelli; Production, Properties and Applications of Fungal Cell Wall Polysaccharides: Chitosan and Glucan, by N. New, T. Furuike, and H. Tamura;